Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,46 +1,66 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer
|
| 3 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
# 1
|
| 6 |
-
|
| 7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
dataset
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
# 3️⃣ Tokenisierung der Texte
|
| 14 |
def tokenize_function(examples):
|
| 15 |
-
return tokenizer(examples["
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
-
# 4
|
| 20 |
training_args = TrainingArguments(
|
| 21 |
output_dir="./results",
|
| 22 |
evaluation_strategy="epoch",
|
| 23 |
-
save_strategy="epoch",
|
| 24 |
per_device_train_batch_size=8,
|
| 25 |
per_device_eval_batch_size=8,
|
| 26 |
num_train_epochs=3,
|
|
|
|
| 27 |
weight_decay=0.01,
|
| 28 |
logging_dir="./logs",
|
|
|
|
| 29 |
)
|
| 30 |
|
| 31 |
-
# 5
|
| 32 |
trainer = Trainer(
|
| 33 |
model=model,
|
| 34 |
args=training_args,
|
| 35 |
-
train_dataset=
|
| 36 |
-
eval_dataset=
|
| 37 |
)
|
| 38 |
-
|
| 39 |
trainer.train()
|
| 40 |
|
| 41 |
-
# 6
|
| 42 |
-
|
| 43 |
tokenizer.save_pretrained("./trained_model")
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from datasets import load_dataset
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
|
| 6 |
+
# Schritt 1: Dataset laden und überprüfen
|
| 7 |
+
# Falls "KeyError: 'text'" auftritt, Spaltennamen prüfen
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
dataset = load_dataset("armanc/scientific_papers", "arxiv") # Falls du PubMed nutzt, ersetze "arxiv" mit "pubmed"
|
| 10 |
+
print(dataset)
|
| 11 |
+
|
| 12 |
+
# Schritt 2: Tokenizer vorbereiten
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
|
| 14 |
|
|
|
|
| 15 |
def tokenize_function(examples):
|
| 16 |
+
return tokenizer(examples["abstract"], padding="max_length", truncation=True)
|
| 17 |
+
|
| 18 |
+
dataset = dataset.map(tokenize_function, batched=True)
|
| 19 |
|
| 20 |
+
# Schritt 3: Modell laden
|
| 21 |
+
model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_scivocab_uncased", num_labels=3)
|
| 22 |
|
| 23 |
+
# Schritt 4: Trainingsparameter setzen
|
| 24 |
training_args = TrainingArguments(
|
| 25 |
output_dir="./results",
|
| 26 |
evaluation_strategy="epoch",
|
|
|
|
| 27 |
per_device_train_batch_size=8,
|
| 28 |
per_device_eval_batch_size=8,
|
| 29 |
num_train_epochs=3,
|
| 30 |
+
learning_rate=5e-5,
|
| 31 |
weight_decay=0.01,
|
| 32 |
logging_dir="./logs",
|
| 33 |
+
logging_steps=500,
|
| 34 |
)
|
| 35 |
|
| 36 |
+
# Schritt 5: Trainer erstellen und Training starten
|
| 37 |
trainer = Trainer(
|
| 38 |
model=model,
|
| 39 |
args=training_args,
|
| 40 |
+
train_dataset=dataset["train"],
|
| 41 |
+
eval_dataset=dataset["validation"],
|
| 42 |
)
|
|
|
|
| 43 |
trainer.train()
|
| 44 |
|
| 45 |
+
# Schritt 6: Modell speichern
|
| 46 |
+
trainer.save_model("./trained_model")
|
| 47 |
tokenizer.save_pretrained("./trained_model")
|
| 48 |
|
| 49 |
+
# Schritt 7: Modell für Gradio bereitstellen
|
| 50 |
+
def predict(text):
|
| 51 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
outputs = model(**inputs)
|
| 54 |
+
logits = outputs.logits
|
| 55 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 56 |
+
return {f"Label {i}": float(probabilities[0][i]) for i in range(len(probabilities[0]))}
|
| 57 |
+
|
| 58 |
+
iface = gr.Interface(
|
| 59 |
+
fn=predict,
|
| 60 |
+
inputs=gr.Textbox(lines=5, placeholder="Paste an abstract here..."),
|
| 61 |
+
outputs=gr.Label(),
|
| 62 |
+
title="Scientific Paper Evaluator",
|
| 63 |
+
description="This AI model scores scientific papers based on relevance, uniqueness, and redundancy."
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
iface.launch()
|