|
|
import gradio as gr |
|
|
from huggingface_hub import InferenceClient |
|
|
from datetime import datetime |
|
|
import os |
|
|
import uuid |
|
|
|
|
|
|
|
|
with open("system_prompt.txt", "r") as f: |
|
|
SYSTEM_PROMPT = f.read() |
|
|
|
|
|
|
|
|
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" |
|
|
DATASET_REPO = "frimelle/companion-chat-logs" |
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
client = InferenceClient(MODEL_NAME) |
|
|
|
|
|
|
|
|
def upload_chat_to_dataset(user_message, assistant_message, system_prompt): |
|
|
row = { |
|
|
"timestamp": datetime.now().isoformat(), |
|
|
"session_id": str(uuid.uuid4()), |
|
|
"user": user_message, |
|
|
"assistant": assistant_message, |
|
|
"system_prompt": system_prompt, |
|
|
} |
|
|
|
|
|
dataset = Dataset.from_dict({k: [v] for k, v in row.items()}) |
|
|
dataset.push_to_hub(DATASET_REPO, private=True, token=HF_TOKEN) |
|
|
|
|
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for user_msg, bot_msg in history: |
|
|
if user_msg: |
|
|
messages.append({"role": "user", "content": user_msg}) |
|
|
if bot_msg: |
|
|
messages.append({"role": "assistant", "content": bot_msg}) |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
response = "" |
|
|
for chunk in client.chat_completion( |
|
|
messages, |
|
|
max_tokens=max_tokens, |
|
|
stream=True, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
): |
|
|
token = chunk.choices[0].delta.content |
|
|
if token: |
|
|
response += token |
|
|
yield response |
|
|
|
|
|
|
|
|
upload_chat_to_dataset(message, response, system_message) |
|
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
|
fn=respond, |
|
|
additional_inputs=[ |
|
|
gr.Textbox(value=SYSTEM_PROMPT, label="System message"), |
|
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
|
], |
|
|
title="BoundrAI", |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |