BoundrAI / app.py
frimelle's picture
frimelle HF Staff
add writing to dataset
707ab5a
raw
history blame
2.26 kB
import gradio as gr
from huggingface_hub import InferenceClient
from datetime import datetime
import os
import uuid
# ---- System Prompt ----
with open("system_prompt.txt", "r") as f:
SYSTEM_PROMPT = f.read()
# ---- Constants ----
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
DATASET_REPO = "frimelle/companion-chat-logs"
HF_TOKEN = os.environ.get("HF_TOKEN") # set in Space secrets
client = InferenceClient(MODEL_NAME)
# ---- Upload to Dataset ----
def upload_chat_to_dataset(user_message, assistant_message, system_prompt):
row = {
"timestamp": datetime.now().isoformat(),
"session_id": str(uuid.uuid4()),
"user": user_message,
"assistant": assistant_message,
"system_prompt": system_prompt,
}
dataset = Dataset.from_dict({k: [v] for k, v in row.items()})
dataset.push_to_hub(DATASET_REPO, private=True, token=HF_TOKEN)
# ---- Chat Function ----
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
response = ""
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content
if token:
response += token
yield response
# Log the final full message to the dataset
upload_chat_to_dataset(message, response, system_message)
# ---- Gradio UI ----
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value=SYSTEM_PROMPT, label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
title="BoundrAI",
)
if __name__ == "__main__":
demo.launch()