Spaces:
Running
Running
- Added docstring for the whole project
Browse files- Dockerfile +0 -1
- README.md +153 -9
- app.py +54 -8
- crawl4ai_client.py +17 -1
- docker-compose.dev.yml +3 -3
- docker-compose.yml +3 -3
- firecrawl_client.py +41 -1
- llm_inference_service.py +29 -4
Dockerfile
CHANGED
|
@@ -8,7 +8,6 @@ COPY requirements.txt .
|
|
| 8 |
RUN pip install --break-system-packages -r requirements.txt
|
| 9 |
RUN python -m playwright install --with-deps chromium
|
| 10 |
|
| 11 |
-
# RUN pip install watchfiles
|
| 12 |
|
| 13 |
COPY . .
|
| 14 |
|
|
|
|
| 8 |
RUN pip install --break-system-packages -r requirements.txt
|
| 9 |
RUN python -m playwright install --with-deps chromium
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
COPY . .
|
| 13 |
|
README.md
CHANGED
|
@@ -7,15 +7,159 @@ sdk: docker
|
|
| 7 |
app_port: 7860
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
app_port: 7860
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# LLM Web Scraper (🕸️ → 🤖 → 🧠 → ❓ → 📄)
|
| 11 |
|
| 12 |
+
Scrape any web page, ask questions, and get structured answers powered by LangChain, FireCrawl, and leading LLMs from NVIDIA and Google—all wrapped in a clean Gradio interface.
|
| 13 |
|
| 14 |
+
🔗 **Live Demo**: https://huggingface.co/spaces/frkhan/llm-web-scrapper
|
| 15 |
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
### 🚀 Features
|
| 19 |
+
|
| 20 |
+
- 🕸️ **Multi-Backend Scraping**: Choose between `FireCrawl` for robust, API-driven scraping and `Crawl4AI` for local, Playwright-based scraping.
|
| 21 |
+
- 🧠 **Intelligent Extraction**: Use powerful LLMs (NVIDIA or Google Gemini) to understand your query and extract specific information from scraped content.
|
| 22 |
+
- 📊 **Structured Output**: Get answers in markdown tables, JSON, or plain text, as requested.
|
| 23 |
+
- 📈 **Full Observability**: Integrated with `Langfuse` to trace both scraping and LLM-extraction steps.
|
| 24 |
+
- ✨ **Interactive UI**: A clean and simple interface built with `Gradio`.
|
| 25 |
+
- 🐳 **Docker-Ready**: Comes with `Dockerfile` and `docker-compose` configurations for easy local and production deployment.
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
### 🛠️ Tech Stack
|
| 30 |
+
|
| 31 |
+
| Component | Purpose |
|
| 32 |
+
| :--- | :--- |
|
| 33 |
+
| **LangChain** | Orchestration of LLM calls |
|
| 34 |
+
| **FireCrawl / Crawl4AI** | Web scraping backends |
|
| 35 |
+
| **NVIDIA / Gemini** | LLM APIs for information extraction |
|
| 36 |
+
| **Langfuse** | Tracing and observability for all operations |
|
| 37 |
+
| **Gradio** | Interactive web UI |
|
| 38 |
+
| **Docker** | Containerized deployment |
|
| 39 |
+
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
## 📦 Installation
|
| 43 |
+
|
| 44 |
+
### Option 1: Run Locally
|
| 45 |
+
|
| 46 |
+
1. **Clone the repository:**
|
| 47 |
+
```bash
|
| 48 |
+
git clone https://github.com/KI-IAN/llm-web-scrapper.git
|
| 49 |
+
cd llm-web-scrapper
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
2. **Install dependencies:**
|
| 53 |
+
```bash
|
| 54 |
+
pip install -r requirements.txt
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
3. **Install Playwright browsers (for Crawl4AI):**
|
| 58 |
+
```bash
|
| 59 |
+
playwright install
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
4. **Create a `.env` file** in the root directory with your API keys:
|
| 63 |
+
```env
|
| 64 |
+
GOOGLE_API_KEY=your_google_api_key
|
| 65 |
+
NVIDIA_API_KEY=your_nvidia_api_key
|
| 66 |
+
FIRECRAWL_API_KEY=your_firecrawl_api_key
|
| 67 |
+
|
| 68 |
+
# Optional: For Langfuse tracing
|
| 69 |
+
LANGFUSE_PUBLIC_KEY=pk-lf-...
|
| 70 |
+
LANGFUSE_SECRET_KEY=sk-lf-...
|
| 71 |
+
LANGFUSE_HOST=https://cloud.langfuse.com
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
5. **Run the application:**
|
| 75 |
+
```bash
|
| 76 |
+
python app.py
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
---
|
| 80 |
+
|
| 81 |
+
### Option 2: Run with Docker
|
| 82 |
+
|
| 83 |
+
1. **For Production:**
|
| 84 |
+
This uses the standard `docker-compose.yml`.
|
| 85 |
+
```bash
|
| 86 |
+
docker compose up --build
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
2. **For Local Development (with live code reload):**
|
| 90 |
+
This uses `docker-compose.dev.yml` to mount your local code into the container.
|
| 91 |
+
```bash
|
| 92 |
+
docker compose -f docker-compose.dev.yml up --build
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
Access the app at http://localhost:12200.
|
| 96 |
+
|
| 97 |
+
---
|
| 98 |
+
|
| 99 |
+
## 🔑 Getting API Keys
|
| 100 |
+
|
| 101 |
+
To use this app, you'll need API keys for **Google Gemini**, **NVIDIA NIM**, and **FireCrawl**. For full observability, you'll also need keys for **Langfuse**.
|
| 102 |
+
|
| 103 |
+
- **Google Gemini API Key**:
|
| 104 |
+
1. Visit the Google AI Studio.
|
| 105 |
+
2. Click **"Create API Key"** and copy the key.
|
| 106 |
+
|
| 107 |
+
- **NVIDIA NIM API Key**:
|
| 108 |
+
1. Go to the NVIDIA API Catalog.
|
| 109 |
+
2. Choose a model, go to the "API" tab, and click **"Get API Key"**.
|
| 110 |
+
|
| 111 |
+
- **FireCrawl API Key**:
|
| 112 |
+
1. Sign up at FireCrawl.dev.
|
| 113 |
+
2. Find your API key in the dashboard.
|
| 114 |
+
|
| 115 |
+
- **Langfuse API Keys (Optional)**:
|
| 116 |
+
1. Sign up or log in at [Langfuse Cloud](https://cloud.langfuse.com/).
|
| 117 |
+
2. Navigate to your project settings and then to the "API Keys" tab.
|
| 118 |
+
3. Create a new key pair to get your `LANGFUSE_PUBLIC_KEY` (starts with `pk-lf-...`) and `LANGFUSE_SECRET_KEY` (starts with `sk-lf-...`).
|
| 119 |
+
4. Add these to your `.env` file to enable tracing.
|
| 120 |
+
|
| 121 |
+
---
|
| 122 |
+
|
| 123 |
+
## 🧪 How to Use
|
| 124 |
+
|
| 125 |
+
1. **Enter a URL**: Provide the URL of the web page you want to analyze.
|
| 126 |
+
2. **Define Your Query**: Specify what you want to extract (e.g., "product name, price, and rating" or "summarize this article").
|
| 127 |
+
3. **Scrape the Web Page**: Choose a scraper (`Crawl4AI` or `FireCrawl`) and click **"Scrape Website"**.
|
| 128 |
+
4. **Select Model & Provider**: Choose an LLM to process the scraped content.
|
| 129 |
+
5. **Extract Info**: Click **"Extract Info by LLM"** to get a structured answer.
|
| 130 |
+
|
| 131 |
+
---
|
| 132 |
+
|
| 133 |
+
### 📁 File Structure
|
| 134 |
+
|
| 135 |
+
```
|
| 136 |
+
llm-web-scrapper/
|
| 137 |
+
├── .env # Local environment variables (not tracked by git)
|
| 138 |
+
├── .github/ # GitHub Actions workflows
|
| 139 |
+
├── .gitignore
|
| 140 |
+
├── docker-compose.yml # Production Docker configuration
|
| 141 |
+
├── docker-compose.dev.yml# Development Docker configuration
|
| 142 |
+
├── Dockerfile
|
| 143 |
+
├── requirements.txt
|
| 144 |
+
├── app.py # Gradio UI and application logic
|
| 145 |
+
├── config.py # Environment variable loading
|
| 146 |
+
├── crawl4ai_client.py # Client for Crawl4AI scraper
|
| 147 |
+
├── firecrawl_client.py # Client for FireCrawl scraper
|
| 148 |
+
└── llm_inference_service.py # Logic for LLM calls
|
| 149 |
+
```
|
| 150 |
+
|
| 151 |
+
---
|
| 152 |
+
|
| 153 |
+
## 📜 License
|
| 154 |
+
|
| 155 |
+
This project is open-source and distributed under the **MIT License**. Feel free to use, modify, and distribute it.
|
| 156 |
+
|
| 157 |
+
---
|
| 158 |
+
|
| 159 |
+
## 🤝 Acknowledgements
|
| 160 |
+
|
| 161 |
+
- LangChain for orchestrating LLM interactions.
|
| 162 |
+
- FireCrawl & Crawl4AI for providing powerful scraping backends.
|
| 163 |
+
- NVIDIA AI Endpoints & Google Gemini for their state-of-the-art LLMs.
|
| 164 |
+
- Langfuse for providing excellent observability tools.
|
| 165 |
+
- Gradio for making UI creation simple and elegant.
|
app.py
CHANGED
|
@@ -1,3 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import firecrawl_client
|
| 3 |
import crawl4ai_client
|
|
@@ -16,7 +24,20 @@ if LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY:
|
|
| 16 |
langfuse = get_client()
|
| 17 |
|
| 18 |
def parse_model_provider(selection):
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
if "(" in selection and ")" in selection:
|
| 21 |
model = selection.split(" (")[0].strip()
|
| 22 |
provider = selection.split(" (")[1].replace(")", "").strip()
|
|
@@ -24,6 +45,21 @@ def parse_model_provider(selection):
|
|
| 24 |
raise ValueError(f"Invalid selection format: {selection}")
|
| 25 |
|
| 26 |
def llm_response_wrapper(query, scrape_result, model_provider_selection, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
yield "⏳ Generating response... Please wait."
|
| 28 |
|
| 29 |
model, provider = parse_model_provider(model_provider_selection)
|
|
@@ -33,9 +69,19 @@ def llm_response_wrapper(query, scrape_result, model_provider_selection, progres
|
|
| 33 |
yield result
|
| 34 |
|
| 35 |
async def scrape_website(url, scraper_selection, progress=gr.Progress(track_tqdm=True)):
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
This
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
"""
|
| 40 |
# 1. First, yield an update to show the loading state and hide the old image.
|
| 41 |
yield "⏳ Scraping website... Please wait."
|
|
@@ -69,6 +115,7 @@ async def scrape_website(url, scraper_selection, progress=gr.Progress(track_tqdm
|
|
| 69 |
yield markdown
|
| 70 |
|
| 71 |
#Gradio UI
|
|
|
|
| 72 |
with gr.Blocks() as gradio_ui:
|
| 73 |
gr.HTML("""
|
| 74 |
<div style="display: flex; align-items: center; gap: 20px; flex-wrap: wrap; margin-bottom: 20px;">
|
|
@@ -127,14 +174,13 @@ with gr.Blocks() as gradio_ui:
|
|
| 127 |
|
| 128 |
with gr.Column():
|
| 129 |
url_input = gr.Textbox(label="Enter URL to scrape", placeholder="https://example.com/query?search=cat+food", lines=1)
|
| 130 |
-
|
| 131 |
-
query_input = gr.Textbox(label="What information do you want to find?", placeholder="Find product name, price, rating", lines=1)
|
| 132 |
|
| 133 |
with gr.Row():
|
| 134 |
scraper_dropdown = gr.Dropdown(
|
| 135 |
label="Select Scraper",
|
| 136 |
-
choices=["Scrape with
|
| 137 |
-
value="Scrape with
|
| 138 |
)
|
| 139 |
scrape_btn = gr.Button("Scrape Website")
|
| 140 |
clear_btn = gr.Button("Clear")
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This module sets up and runs the Gradio web interface for the LLM Web Scraper application.
|
| 3 |
+
|
| 4 |
+
It orchestrates the UI components, event handling for scraping and LLM extraction,
|
| 5 |
+
and integrates with backend services for scraping (FireCrawl, Crawl4AI) and
|
| 6 |
+
LLM inference. It also initializes and uses Langfuse for tracing application performance.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
import gradio as gr
|
| 10 |
import firecrawl_client
|
| 11 |
import crawl4ai_client
|
|
|
|
| 24 |
langfuse = get_client()
|
| 25 |
|
| 26 |
def parse_model_provider(selection):
|
| 27 |
+
"""
|
| 28 |
+
Parses a model and provider from a selection string.
|
| 29 |
+
|
| 30 |
+
The expected format is "<model_name> (<provider>)".
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
selection (str): The string to parse.
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
tuple[str, str]: A tuple containing the model name and provider.
|
| 37 |
+
|
| 38 |
+
Raises:
|
| 39 |
+
ValueError: If the selection string is not in the expected format.
|
| 40 |
+
"""
|
| 41 |
if "(" in selection and ")" in selection:
|
| 42 |
model = selection.split(" (")[0].strip()
|
| 43 |
provider = selection.split(" (")[1].replace(")", "").strip()
|
|
|
|
| 45 |
raise ValueError(f"Invalid selection format: {selection}")
|
| 46 |
|
| 47 |
def llm_response_wrapper(query, scrape_result, model_provider_selection, progress=gr.Progress(track_tqdm=True)):
|
| 48 |
+
"""
|
| 49 |
+
A generator function that wraps the LLM inference call for the Gradio UI.
|
| 50 |
+
|
| 51 |
+
It yields an initial status message, calls the LLM service to extract information,
|
| 52 |
+
and then yields the final result or an error message.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
query (str): The user's query for information extraction.
|
| 56 |
+
scrape_result (str): The scraped markdown content from the website.
|
| 57 |
+
model_provider_selection (str): The selected model and provider string.
|
| 58 |
+
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
|
| 59 |
+
|
| 60 |
+
Yields:
|
| 61 |
+
str: Status messages and the final LLM response as a markdown string.
|
| 62 |
+
"""
|
| 63 |
yield "⏳ Generating response... Please wait."
|
| 64 |
|
| 65 |
model, provider = parse_model_provider(model_provider_selection)
|
|
|
|
| 69 |
yield result
|
| 70 |
|
| 71 |
async def scrape_website(url, scraper_selection, progress=gr.Progress(track_tqdm=True)):
|
| 72 |
+
"""An async generator that scrapes a website based on user selection for the Gradio UI.
|
| 73 |
+
|
| 74 |
+
This function yields an initial status message, then performs the web scraping
|
| 75 |
+
using the selected tool (FireCrawl or Crawl4AI). If Langfuse is configured,
|
| 76 |
+
it wraps the scraping operation in a trace for observability.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
url (str): The URL of the website to scrape.
|
| 80 |
+
scraper_selection (str): The scraping tool selected by the user.
|
| 81 |
+
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
|
| 82 |
+
|
| 83 |
+
Yields:
|
| 84 |
+
str: A status message, followed by the scraped markdown content or an error message.
|
| 85 |
"""
|
| 86 |
# 1. First, yield an update to show the loading state and hide the old image.
|
| 87 |
yield "⏳ Scraping website... Please wait."
|
|
|
|
| 115 |
yield markdown
|
| 116 |
|
| 117 |
#Gradio UI
|
| 118 |
+
# This block defines the entire Gradio user interface, including layout and component interactions.
|
| 119 |
with gr.Blocks() as gradio_ui:
|
| 120 |
gr.HTML("""
|
| 121 |
<div style="display: flex; align-items: center; gap: 20px; flex-wrap: wrap; margin-bottom: 20px;">
|
|
|
|
| 174 |
|
| 175 |
with gr.Column():
|
| 176 |
url_input = gr.Textbox(label="Enter URL to scrape", placeholder="https://example.com/query?search=cat+food", lines=1)
|
| 177 |
+
query_input = gr.Textbox(label="What information do you want to find?", placeholder="Find product name, price, rating etc. / Summarize the content of this page", lines=2)
|
|
|
|
| 178 |
|
| 179 |
with gr.Row():
|
| 180 |
scraper_dropdown = gr.Dropdown(
|
| 181 |
label="Select Scraper",
|
| 182 |
+
choices=["Scrape with Crawl4AI", "Scrape with FireCrawl"],
|
| 183 |
+
value="Scrape with Crawl4AI"
|
| 184 |
)
|
| 185 |
scrape_btn = gr.Button("Scrape Website")
|
| 186 |
clear_btn = gr.Button("Clear")
|
crawl4ai_client.py
CHANGED
|
@@ -1,8 +1,24 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from crawl4ai import AsyncWebCrawler
|
| 3 |
|
| 4 |
|
| 5 |
async def scrape_and_get_markdown_with_crawl4ai(url: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
try:
|
| 7 |
async with AsyncWebCrawler() as crawler:
|
| 8 |
result = await crawler.arun(url=url)
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This module provides a client for interacting with the Crawl4AI library.
|
| 3 |
+
|
| 4 |
+
It encapsulates the logic for scraping a website using Crawl4AI and extracting
|
| 5 |
+
its content as a markdown string, handling potential errors during the process.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
from crawl4ai import AsyncWebCrawler
|
| 9 |
|
| 10 |
|
| 11 |
async def scrape_and_get_markdown_with_crawl4ai(url: str) -> str:
|
| 12 |
+
"""
|
| 13 |
+
Asynchronously scrapes a given URL using Crawl4AI and returns its content as markdown.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
url (str): The URL of the website to scrape.
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
str: The scraped content in markdown format. If scraping fails or returns
|
| 20 |
+
no content, a formatted error message string is returned.
|
| 21 |
+
"""
|
| 22 |
try:
|
| 23 |
async with AsyncWebCrawler() as crawler:
|
| 24 |
result = await crawler.arun(url=url)
|
docker-compose.dev.yml
CHANGED
|
@@ -12,9 +12,9 @@ services:
|
|
| 12 |
- NVIDIA_API_KEY=${NVIDIA_API_KEY} # Load this key from .env in local/dev environment
|
| 13 |
- GOOGLE_API_KEY=${GOOGLE_API_KEY} # Load this key from .env in local/dev environment
|
| 14 |
- FIRECRAWL_API_KEY=${FIRECRAWL_API_KEY} # Load this key from .env in local/dev environment
|
| 15 |
-
- LANGFUSE_PUBLIC_KEY=${LANGFUSE_PUBLIC_KEY}
|
| 16 |
-
- LANGFUSE_SECRET_KEY=${LANGFUSE_SECRET_KEY}
|
| 17 |
-
- LANGFUSE_HOST=${LANGFUSE_HOST}
|
| 18 |
volumes:
|
| 19 |
- .:/app:rw # This is for local development. Docker reads the code from the host machine. Changes on the host are reflected in the container.
|
| 20 |
restart: unless-stopped
|
|
|
|
| 12 |
- NVIDIA_API_KEY=${NVIDIA_API_KEY} # Load this key from .env in local/dev environment
|
| 13 |
- GOOGLE_API_KEY=${GOOGLE_API_KEY} # Load this key from .env in local/dev environment
|
| 14 |
- FIRECRAWL_API_KEY=${FIRECRAWL_API_KEY} # Load this key from .env in local/dev environment
|
| 15 |
+
- LANGFUSE_PUBLIC_KEY=${LANGFUSE_PUBLIC_KEY} # Load this key from .env in local/dev environment
|
| 16 |
+
- LANGFUSE_SECRET_KEY=${LANGFUSE_SECRET_KEY} # Load this key from .env in local/dev environment
|
| 17 |
+
- LANGFUSE_HOST=${LANGFUSE_HOST} # Load this key from .env in local/dev environment
|
| 18 |
volumes:
|
| 19 |
- .:/app:rw # This is for local development. Docker reads the code from the host machine. Changes on the host are reflected in the container.
|
| 20 |
restart: unless-stopped
|
docker-compose.yml
CHANGED
|
@@ -12,7 +12,7 @@ services:
|
|
| 12 |
- NVIDIA_API_KEY=${NVIDIA_API_KEY} # Load this key from .env or manually add the secret
|
| 13 |
- GOOGLE_API_KEY=${GOOGLE_API_KEY} # Load this key from .env or manually add the secret
|
| 14 |
- FIRECRAWL_API_KEY=${FIRECRAWL_API_KEY} # Load this key from .env in local/dev environment
|
| 15 |
-
- LANGFUSE_PUBLIC_KEY=${LANGFUSE_PUBLIC_KEY}
|
| 16 |
-
- LANGFUSE_SECRET_KEY=${LANGFUSE_SECRET_KEY}
|
| 17 |
-
- LANGFUSE_HOST=${LANGFUSE_HOST}
|
| 18 |
restart: unless-stopped
|
|
|
|
| 12 |
- NVIDIA_API_KEY=${NVIDIA_API_KEY} # Load this key from .env or manually add the secret
|
| 13 |
- GOOGLE_API_KEY=${GOOGLE_API_KEY} # Load this key from .env or manually add the secret
|
| 14 |
- FIRECRAWL_API_KEY=${FIRECRAWL_API_KEY} # Load this key from .env in local/dev environment
|
| 15 |
+
- LANGFUSE_PUBLIC_KEY=${LANGFUSE_PUBLIC_KEY} # Load this key from .env or manually add the secret
|
| 16 |
+
- LANGFUSE_SECRET_KEY=${LANGFUSE_SECRET_KEY} # Load this key from .env or manually add the secret
|
| 17 |
+
- LANGFUSE_HOST=${LANGFUSE_HOST} # Load this key from .env or manually add the secret
|
| 18 |
restart: unless-stopped
|
firecrawl_client.py
CHANGED
|
@@ -1,10 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from langchain_community.document_loaders import FireCrawlLoader
|
| 2 |
from langchain_core.documents import Document
|
| 3 |
from config import FIRE_CRAWL_API_KEY
|
| 4 |
|
| 5 |
|
| 6 |
def scrape_with_firecrawl(url: str) -> list[Document]:
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
loader = FireCrawlLoader(url=url,
|
| 9 |
api_key=FIRE_CRAWL_API_KEY,
|
| 10 |
mode='scrape')
|
|
@@ -17,6 +34,17 @@ def scrape_with_firecrawl(url: str) -> list[Document]:
|
|
| 17 |
return pages
|
| 18 |
|
| 19 |
def get_markdown_from_documents(docs: list[Document]) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
markdown_content = ""
|
| 21 |
for i, doc in enumerate(docs):
|
| 22 |
markdown_content += f"### Page {i+1}\n"
|
|
@@ -25,6 +53,18 @@ def get_markdown_from_documents(docs: list[Document]) -> str:
|
|
| 25 |
|
| 26 |
|
| 27 |
def scrape_and_get_markdown_with_firecrawl(url: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
try:
|
| 29 |
docs = scrape_with_firecrawl(url)
|
| 30 |
if not docs:
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This module provides a client for interacting with the FireCrawl service.
|
| 3 |
+
|
| 4 |
+
It encapsulates the logic for scraping a website using the FireCrawlLoader from
|
| 5 |
+
LangChain, converting the scraped documents into a single markdown string, and
|
| 6 |
+
handling potential errors during the process.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
from langchain_community.document_loaders import FireCrawlLoader
|
| 10 |
from langchain_core.documents import Document
|
| 11 |
from config import FIRE_CRAWL_API_KEY
|
| 12 |
|
| 13 |
|
| 14 |
def scrape_with_firecrawl(url: str) -> list[Document]:
|
| 15 |
+
"""
|
| 16 |
+
Scrapes a given URL using FireCrawl and returns the content as a list of Documents.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
url (str): The URL of the website to scrape.
|
| 20 |
+
|
| 21 |
+
Returns:
|
| 22 |
+
list[Document]: A list of LangChain Document objects, where each document
|
| 23 |
+
represents a scraped page.
|
| 24 |
+
"""
|
| 25 |
loader = FireCrawlLoader(url=url,
|
| 26 |
api_key=FIRE_CRAWL_API_KEY,
|
| 27 |
mode='scrape')
|
|
|
|
| 34 |
return pages
|
| 35 |
|
| 36 |
def get_markdown_from_documents(docs: list[Document]) -> str:
|
| 37 |
+
"""
|
| 38 |
+
Converts a list of LangChain Documents into a single markdown string.
|
| 39 |
+
|
| 40 |
+
Each document's content is appended, separated by a horizontal rule.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
docs (list[Document]): A list of Document objects to process.
|
| 44 |
+
|
| 45 |
+
Returns:
|
| 46 |
+
str: A string containing the combined content in markdown format.
|
| 47 |
+
"""
|
| 48 |
markdown_content = ""
|
| 49 |
for i, doc in enumerate(docs):
|
| 50 |
markdown_content += f"### Page {i+1}\n"
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
def scrape_and_get_markdown_with_firecrawl(url: str) -> str:
|
| 56 |
+
"""
|
| 57 |
+
Orchestrates the scraping of a URL with FireCrawl and returns the content as markdown.
|
| 58 |
+
|
| 59 |
+
This is the main entry point function for this module. It handles the full
|
| 60 |
+
process of scraping, content conversion, and error handling.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
url (str): The URL of the website to scrape.
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
str: The scraped content in markdown format, or a formatted error message string if an issue occurs.
|
| 67 |
+
"""
|
| 68 |
try:
|
| 69 |
docs = scrape_with_firecrawl(url)
|
| 70 |
if not docs:
|
llm_inference_service.py
CHANGED
|
@@ -1,3 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from langchain.chat_models import init_chat_model
|
| 2 |
from langfuse.langchain import CallbackHandler
|
| 3 |
from langfuse import Langfuse
|
|
@@ -5,24 +13,41 @@ from langfuse import Langfuse
|
|
| 5 |
from config import LANGFUSE_PUBLIC_KEY, LANGFUSE_SECRET_KEY, LANGFUSE_HOST
|
| 6 |
|
| 7 |
# Initialize Langfuse client
|
| 8 |
-
#
|
|
|
|
|
|
|
|
|
|
| 9 |
langfuse_callback_handler = None
|
| 10 |
callbacks = []
|
| 11 |
|
| 12 |
if LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY:
|
| 13 |
-
|
| 14 |
public_key=LANGFUSE_PUBLIC_KEY,
|
| 15 |
secret_key=LANGFUSE_SECRET_KEY,
|
| 16 |
host=LANGFUSE_HOST,
|
| 17 |
)
|
| 18 |
-
|
| 19 |
langfuse_callback_handler = CallbackHandler()
|
| 20 |
-
|
| 21 |
callbacks.append(langfuse_callback_handler)
|
| 22 |
|
| 23 |
|
| 24 |
|
| 25 |
def extract_page_info_by_llm(user_query: str, scraped_markdown_content: str, model_name: str, model_provider: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
if not scraped_markdown_content:
|
| 28 |
return "No relevant information found to answer your question."
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This module provides the service for interacting with Large Language Models (LLMs).
|
| 3 |
+
|
| 4 |
+
It is responsible for initializing the Langfuse callback handler for tracing,
|
| 5 |
+
constructing the appropriate prompt for information extraction, initializing the
|
| 6 |
+
selected chat model, and invoking the model to get a response.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
from langchain.chat_models import init_chat_model
|
| 10 |
from langfuse.langchain import CallbackHandler
|
| 11 |
from langfuse import Langfuse
|
|
|
|
| 13 |
from config import LANGFUSE_PUBLIC_KEY, LANGFUSE_SECRET_KEY, LANGFUSE_HOST
|
| 14 |
|
| 15 |
# Initialize Langfuse client
|
| 16 |
+
# This block sets up the Langfuse callback handler for LangChain.
|
| 17 |
+
# It initializes the Langfuse client and creates a CallbackHandler instance
|
| 18 |
+
# only if the required API keys are available. The handler is then added to
|
| 19 |
+
# a list of callbacks that can be passed to LLM invocations for tracing.
|
| 20 |
langfuse_callback_handler = None
|
| 21 |
callbacks = []
|
| 22 |
|
| 23 |
if LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY:
|
| 24 |
+
Langfuse(
|
| 25 |
public_key=LANGFUSE_PUBLIC_KEY,
|
| 26 |
secret_key=LANGFUSE_SECRET_KEY,
|
| 27 |
host=LANGFUSE_HOST,
|
| 28 |
)
|
|
|
|
| 29 |
langfuse_callback_handler = CallbackHandler()
|
|
|
|
| 30 |
callbacks.append(langfuse_callback_handler)
|
| 31 |
|
| 32 |
|
| 33 |
|
| 34 |
def extract_page_info_by_llm(user_query: str, scraped_markdown_content: str, model_name: str, model_provider: str) -> str:
|
| 35 |
+
"""
|
| 36 |
+
Extracts information from scraped content using a specified Large Language Model.
|
| 37 |
+
|
| 38 |
+
This function constructs a detailed prompt, initializes the selected chat model,
|
| 39 |
+
and invokes it with the scraped content and user query. If Langfuse is configured,
|
| 40 |
+
it uses a callback handler to trace the LLM interaction.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
user_query (str): The user's query specifying what information to extract.
|
| 44 |
+
scraped_markdown_content (str): The markdown content from the scraped web page.
|
| 45 |
+
model_name (str): The name of the LLM to use for extraction.
|
| 46 |
+
model_provider (str): The provider of the LLM (e.g., 'google_genai', 'nvidia').
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
str: The content of the LLM's response.
|
| 50 |
+
"""
|
| 51 |
|
| 52 |
if not scraped_markdown_content:
|
| 53 |
return "No relevant information found to answer your question."
|