Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import spaces | |
| import random | |
| import shutil | |
| import gradio as gr | |
| from glob import glob | |
| from pathlib import Path | |
| import uuid | |
| import argparse | |
| import torch | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini') | |
| parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo') | |
| parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2') | |
| parser.add_argument('--port', type=int, default=7860) | |
| parser.add_argument('--host', type=str, default='0.0.0.0') | |
| parser.add_argument('--device', type=str, default='cuda') | |
| parser.add_argument('--mc_algo', type=str, default='mc') | |
| parser.add_argument('--cache_path', type=str, default='gradio_cache') | |
| parser.add_argument('--enable_t23d', action='store_true') | |
| parser.add_argument('--disable_tex', action='store_true') | |
| parser.add_argument('--enable_flashvdm', action='store_true') | |
| parser.add_argument('--compile', action='store_true') | |
| parser.add_argument('--low_vram_mode', action='store_true') | |
| args = parser.parse_args() | |
| args.enable_flashvdm = True | |
| SAVE_DIR = args.cache_path | |
| os.makedirs(SAVE_DIR, exist_ok=True) | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def gen_save_folder(max_size=200): | |
| os.makedirs(SAVE_DIR, exist_ok=True) | |
| # 获取所有文件夹路径 | |
| dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()] | |
| # 如果文件夹数量超过 max_size,删除创建时间最久的文件夹 | |
| if len(dirs) >= max_size: | |
| # 按创建时间排序,最久的排在前面 | |
| oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime) | |
| shutil.rmtree(oldest_dir) | |
| print(f"Removed the oldest folder: {oldest_dir}") | |
| # 生成一个新的 uuid 文件夹名称 | |
| new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4())) | |
| os.makedirs(new_folder, exist_ok=True) | |
| print(f"Created new folder: {new_folder}") | |
| return new_folder | |
| from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \ | |
| Hunyuan3DDiTFlowMatchingPipeline | |
| from hy3dgen.rembg import BackgroundRemover | |
| rmbg_worker = BackgroundRemover() | |
| i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained( | |
| args.model_path, | |
| subfolder=args.subfolder, | |
| use_safetensors=True, | |
| device=args.device, | |
| ) | |
| if args.enable_flashvdm: | |
| mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo | |
| i23d_worker.enable_flashvdm(mc_algo=mc_algo) | |
| if args.compile: | |
| i23d_worker.compile() | |
| progress=gr.Progress() | |
| def gen_shape( | |
| image=None, | |
| steps=50, | |
| guidance_scale=7.5, | |
| seed=1234, | |
| octree_resolution=256, | |
| num_chunks=200000, | |
| target_face_num=10000, | |
| randomize_seed: bool = False, | |
| ): | |
| def callback(step_idx, timestep, outputs): | |
| progress_value = (step_idx+1.0)/steps | |
| progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps") | |
| if image is None: | |
| raise gr.Error("Please provide either a caption or an image.") | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| octree_resolution = int(octree_resolution) | |
| save_folder = gen_save_folder() | |
| image = rmbg_worker(image.convert('RGB')) | |
| generator = torch.Generator() | |
| generator = generator.manual_seed(int(seed)) | |
| outputs = i23d_worker( | |
| image=image, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| octree_resolution=octree_resolution, | |
| num_chunks=num_chunks, | |
| output_type='mesh', | |
| callback=callback | |
| ) | |
| print(outputs) | |
| def get_example_img_list(): | |
| print('Loading example img list ...') | |
| return sorted(glob('./assets/example_images/**/*.png', recursive=True)) | |
| example_imgs = get_example_img_list() | |
| HTML_OUTPUT_PLACEHOLDER = f""" | |
| <div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'> | |
| <div style='text-align: center; font-size: 16px; color: #6b7280;'> | |
| <p style="color: #8d8d8d;">No mesh here.</p> | |
| </div> | |
| </div> | |
| """ | |
| MAX_SEED = 1e7 | |
| title = "## Image to 3D" | |
| description = "A lightweight image to 3D converter" | |
| with gr.Blocks().queue() as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| gr.Markdown("#### Image Prompt") | |
| image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290) | |
| gen_button = gr.Button(value='Generate Shape', variant='primary') | |
| with gr.Accordion("Advanced Options", open=False): | |
| with gr.Column(): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=1234, | |
| min_width=100, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Column(): | |
| num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps') | |
| octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution') | |
| with gr.Column(): | |
| cfg_scale = gr.Slider(maximum=20.0, minimum=1.0, value=5.5, step=0.1, label='Guidance Scale') | |
| num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, label='Number of Chunks') | |
| target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, label='Target Face Number') | |
| with gr.Column(scale=6): | |
| gr.Markdown("#### Generated Mesh") | |
| html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
| with gr.Column(scale=3): | |
| gr.Markdown("#### Image Examples") | |
| gr.Examples(examples=example_imgs, inputs=[image], | |
| label=None, examples_per_page=18) | |
| gen_button.click( | |
| fn=gen_shape, | |
| inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed], | |
| outputs=[html_export_mesh] | |
| ) | |
| demo.launch() |