import os
import spaces
import random
import shutil
import gradio as gr
from glob import glob
from pathlib import Path
import uuid
import argparse
import torch
import uvicorn
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import trimesh
from transformers import AutoProcessor, AutoModelForImageClassification
from PIL import Image
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini')
parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo')
parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2')
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--mc_algo', type=str, default='mc')
parser.add_argument('--cache_path', type=str, default='gradio_cache')
parser.add_argument('--enable_t23d', action='store_true')
parser.add_argument('--disable_tex', action='store_true')
parser.add_argument('--enable_flashvdm', action='store_true')
parser.add_argument('--compile', action='store_true')
parser.add_argument('--low_vram_mode', action='store_true')
args = parser.parse_args()
args.enable_flashvdm = True
SAVE_DIR = args.cache_path
os.makedirs(SAVE_DIR, exist_ok=True)
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
HTML_HEIGHT = 500
HTML_WIDTH = 500
# -------------------- NSFW 检测模型加载 --------------------
nsfw_processor = AutoProcessor.from_pretrained("Falconsai/nsfw_image_detection")
nsfw_model = AutoModelForImageClassification.from_pretrained("Falconsai/nsfw_image_detection").to(args.device)
# -----------------------------------------------------------
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def gen_save_folder(max_size=200):
os.makedirs(SAVE_DIR, exist_ok=True)
# 获取所有文件夹路径
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()]
# 如果文件夹数量超过 max_size,删除创建时间最久的文件夹
if len(dirs) >= max_size:
# 按创建时间排序,最久的排在前面
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime)
shutil.rmtree(oldest_dir)
print(f"Removed the oldest folder: {oldest_dir}")
# 生成一个新的 uuid 文件夹名称
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4()))
os.makedirs(new_folder, exist_ok=True)
print(f"Created new folder: {new_folder}")
return new_folder
def export_mesh(mesh, save_folder, textured=False, type='glb'):
if textured:
path = os.path.join(save_folder, f'textured_mesh.{type}')
else:
path = os.path.join(save_folder, f'white_mesh.{type}')
if type not in ['glb', 'obj']:
mesh.export(path)
else:
mesh.export(path, include_normals=textured)
return path
def build_model_viewer_html(save_folder, height=660, width=790, textured=False):
# Remove first folder from path to make relative path
if textured:
related_path = f"./textured_mesh.glb"
template_name = './assets/modelviewer-textured-template.html'
output_html_path = os.path.join(save_folder, f'textured_mesh.html')
else:
related_path = f"./white_mesh.glb"
template_name = './assets/modelviewer-template.html'
output_html_path = os.path.join(save_folder, f'white_mesh.html')
offset = 50 if textured else 10
with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f:
template_html = f.read()
with open(output_html_path, 'w', encoding='utf-8') as f:
template_html = template_html.replace('#height#', f'{height - offset}')
template_html = template_html.replace('#width#', f'{width}')
template_html = template_html.replace('#src#', f'{related_path}/')
f.write(template_html)
rel_path = os.path.relpath(output_html_path, SAVE_DIR)
iframe_tag = f''
print(
f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}')
return f"""
{iframe_tag}
"""
from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \
Hunyuan3DDiTFlowMatchingPipeline
from hy3dgen.shapegen.pipelines import export_to_trimesh
from hy3dgen.rembg import BackgroundRemover
rmbg_worker = BackgroundRemover()
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
args.model_path,
subfolder=args.subfolder,
use_safetensors=True,
device=args.device,
)
if args.enable_flashvdm:
mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo
i23d_worker.enable_flashvdm(mc_algo=mc_algo)
if args.compile:
i23d_worker.compile()
floater_remove_worker = FloaterRemover()
degenerate_face_remove_worker = DegenerateFaceRemover()
face_reduce_worker = FaceReducer()
def detect_nsfw(image: Image.Image, threshold: float = 0.5) -> bool:
"""Returns True if image is NSFW"""
inputs = nsfw_processor(images=image, return_tensors="pt").to(args.device)
with torch.no_grad():
outputs = nsfw_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
nsfw_score = probs[0][1].item() # label 1 = NSFW
return nsfw_score > threshold
progress=gr.Progress()
@spaces.GPU(duration=40)
def _gen_shape_on_gpu(
image=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
num_chunks=200000,
target_face_num=10000,
randomize_seed: bool = False,
):
progress(0,desc="Starting")
def callback(step_idx, timestep, outputs):
progress_value = ((step_idx+1.0)/steps)*(0.5/1.0)
progress(progress_value, desc=f"Mesh generating, {step_idx + 1}/{steps} steps")
if image is None:
error_info = {
"error": "Please provide either a caption or an image.",
"status": "failed",
}
return None,None,None,None,error_info
rgbImage = image.convert('RGB')
# NSFW 检测
if nsfw_model and nsfw_processor:
if detect_nsfw(rgbImage):
error_info = {
"error": "The input image contains NSFW content and cannot be used. Please provide a different image and try again.",
"status": "failed",
}
return None,None,None,None,error_info
seed = int(randomize_seed_fn(seed, randomize_seed))
octree_resolution = int(octree_resolution)
save_folder = gen_save_folder()
# 先移除背景
image = rmbg_worker(rgbImage)
# 生成模型
generator = torch.Generator()
generator = generator.manual_seed(int(seed))
outputs = i23d_worker(
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
octree_resolution=octree_resolution,
num_chunks=num_chunks,
output_type='mesh',
callback=callback,
callback_steps=1
)
mesh = export_to_trimesh(outputs)[0]
path = export_mesh(mesh, save_folder, textured=False)
# model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH)
# return model_viewer_html, path
if args.low_vram_mode:
torch.cuda.empty_cache()
if path is None:
error_info = {
"error": "'Please generate a mesh first.'",
"status": "failed",
}
return None,None,None,None,error_info
# 简化模型
print(f'exporting {path}')
print(f'reduce face to {target_face_num}')
mesh = trimesh.load(path)
progress(0.5,desc="Optimizing mesh")
mesh = floater_remove_worker(mesh)
mesh = degenerate_face_remove_worker(mesh)
progress(0.6,desc="Reducing mesh faces")
mesh = face_reduce_worker(mesh, target_face_num)
save_folder = gen_save_folder()
progress(0.9,desc="Converting format")
file_type = "obj"
sourceObjPath = export_mesh(mesh, save_folder, textured=False, type=file_type)
rel_objPath = os.path.relpath(sourceObjPath, SAVE_DIR)
objPath = "/static/"+rel_objPath
# for preview
save_folder = gen_save_folder()
_ = export_mesh(mesh, save_folder, textured=False)
model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, textured=False)
glbPath = os.path.join(save_folder, f'white_mesh.glb')
rel_glbPath = os.path.relpath(glbPath, SAVE_DIR)
glbPath = "/static/"+rel_glbPath
progress(1,desc="Complete")
info = {
"status": "success"
}
return model_viewer_html, gr.update(value=sourceObjPath, interactive=True), glbPath, objPath, info
def gen_shape(
image=None,
steps=50,
guidance_scale=7.5,
seed=1234,
octree_resolution=256,
num_chunks=200000,
target_face_num=10000,
randomize_seed: bool = False,
):
# 调用 GPU 函数
html_export_mesh,file_export,glbPath_output,objPath_output, info = _gen_shape_on_gpu(
image,
steps,
guidance_scale,
seed,
octree_resolution,
num_chunks,
target_face_num,
randomize_seed
)
# 如果出错,抛出异常
if info["status"] == "failed":
raise gr.Error(info["error"])
return html_export_mesh, file_export, glbPath_output, objPath_output
def get_example_img_list():
print('Loading example img list ...')
return sorted(glob('./assets/example_images/**/*.png', recursive=True))
example_imgs = get_example_img_list()
HTML_OUTPUT_PLACEHOLDER = f"""
"""
MAX_SEED = 1e7
title = "## AI 3D Model Generator"
description = "Our Image-to-3D Generator transforms your 2D photos into stunning, AI generated 3D models—ready for games, AR/VR, or 3D printing. Our AI 3D Modeling is based on Hunyuan 2.0. Check more in [imgto3d.ai](https://www.imgto3d.ai)."
with gr.Blocks().queue() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("#### Image Prompt")
image = gr.Image(sources=["upload"], label='Image', type='pil', image_mode='RGBA', height=290)
gen_button = gr.Button(value='Generate Shape', variant='primary')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=1234,
min_width=100,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
num_steps = gr.Slider(maximum=100, minimum=1, value=5, step=1, label='Inference Steps')
octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution')
with gr.Column():
cfg_scale = gr.Slider(maximum=20.0, minimum=1.0, value=5.5, step=0.1, label='Guidance Scale')
num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, label='Number of Chunks')
target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, label='Target Face Number')
with gr.Column(scale=6):
gr.Markdown("#### Generated Mesh")
html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output')
file_export = gr.DownloadButton(label="Download", variant='primary', interactive=False)
with gr.Row():
objPath_output = gr.Text(label="Obj Path",interactive=False)
glbPath_output = gr.Text(label="Glb Path",interactive=False)
with gr.Column(scale=3):
gr.Markdown("#### Image Examples")
gr.Examples(examples=example_imgs, inputs=[image],
label=None, examples_per_page=18)
gen_button.click(
fn=gen_shape,
inputs=[image,num_steps,cfg_scale,seed,octree_resolution,num_chunks,target_face_num, randomize_seed],
outputs=[html_export_mesh,file_export, glbPath_output, objPath_output]
)
if __name__ == "__main__":
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2
# create a FastAPI app
app = FastAPI()
# create a static directory to store the static files
static_dir = Path(SAVE_DIR).absolute()
static_dir.mkdir(parents=True, exist_ok=True)
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static")
shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True)
if args.low_vram_mode:
torch.cuda.empty_cache()
app = gr.mount_gradio_app(app, demo, path="/")
# demo.launch()
from spaces import zero
zero.startup()
uvicorn.run(app, host=args.host, port=args.port)