Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| """ | |
| PyLate ZeroGPU Document Search with Runtime Package Installation | |
| Complete version that installs all dependencies at startup if needed. | |
| """ | |
| import subprocess | |
| import sys | |
| import os | |
| import time | |
| print("π Starting PyLate ZeroGPU Document Search...") | |
| print("π§ Checking and installing required packages...") | |
| # ===== RUNTIME PACKAGE INSTALLATION ===== | |
| def install_package(package, quiet=True): | |
| """Install a package at runtime.""" | |
| try: | |
| if quiet: | |
| subprocess.check_call([ | |
| sys.executable, '-m', 'pip', 'install', package, | |
| '--quiet', '--disable-pip-version-check' | |
| ], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) | |
| else: | |
| subprocess.check_call([sys.executable, '-m', 'pip', 'install', package]) | |
| return True | |
| except Exception as e: | |
| print(f"β οΈ Failed to install {package}: {e}") | |
| return False | |
| def check_and_install_packages(): | |
| """Check and install all required packages.""" | |
| # Define packages with their import names and pip names | |
| packages_to_check = [ | |
| # (import_name, pip_package, test_import) | |
| ('gradio', 'gradio==4.44.0', lambda: __import__('gradio')), | |
| ('spaces', 'spaces', lambda: __import__('spaces')), | |
| ('sentence_transformers', 'sentence-transformers', lambda: __import__('sentence_transformers')), | |
| ('docx', 'python-docx', lambda: __import__('docx')), | |
| ('fitz', 'pymupdf', lambda: __import__('fitz')), | |
| ('unstructured', 'unstructured', lambda: __import__('unstructured')), | |
| ('pandas', 'pandas', lambda: __import__('pandas')), | |
| ('numpy', 'numpy', lambda: __import__('numpy')), | |
| ('huggingface_hub', 'huggingface_hub', lambda: __import__('huggingface_hub')), | |
| ('accelerate', 'accelerate', lambda: __import__('accelerate')), | |
| ('pylate', 'pylate==1.2.0', lambda: __import__('pylate')), | |
| ] | |
| installed_count = 0 | |
| failed_packages = [] | |
| for import_name, pip_package, test_func in packages_to_check: | |
| try: | |
| test_func() | |
| print(f"β {import_name} - already installed") | |
| installed_count += 1 | |
| except ImportError: | |
| print(f"π¦ Installing {pip_package}...") | |
| success = install_package(pip_package, quiet=False) | |
| if success: | |
| try: | |
| # Test import after installation | |
| test_func() | |
| print(f"β {import_name} - installed successfully") | |
| installed_count += 1 | |
| except ImportError: | |
| print(f"β {import_name} - installation failed (import test failed)") | |
| failed_packages.append(import_name) | |
| else: | |
| print(f"β {import_name} - installation failed") | |
| failed_packages.append(import_name) | |
| print(f"\nπ Installation Summary:") | |
| print(f" β Successfully installed/verified: {installed_count}/{len(packages_to_check)}") | |
| if failed_packages: | |
| print(f" β Failed packages: {', '.join(failed_packages)}") | |
| print(f" β οΈ App may not work correctly with missing packages") | |
| else: | |
| print(f" π All packages ready!") | |
| return len(failed_packages) == 0 | |
| # Install packages before importing anything else | |
| installation_success = check_and_install_packages() | |
| # Now import everything | |
| print("\nπ Loading modules...") | |
| try: | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import tempfile | |
| import sqlite3 | |
| import json | |
| import hashlib | |
| from pathlib import Path | |
| from typing import List, Dict, Any, Tuple | |
| print("β Core modules loaded") | |
| except ImportError as e: | |
| print(f"β Failed to import core modules: {e}") | |
| sys.exit(1) | |
| # Import document processing modules with fallbacks | |
| try: | |
| import docx | |
| print("β python-docx loaded") | |
| except ImportError: | |
| print("β οΈ python-docx not available - DOCX processing will be disabled") | |
| docx = None | |
| try: | |
| import fitz # pymupdf | |
| print("β PyMuPDF loaded") | |
| except ImportError: | |
| print("β οΈ PyMuPDF not available - PDF processing will be limited") | |
| fitz = None | |
| try: | |
| from unstructured.partition.auto import partition | |
| print("β Unstructured loaded") | |
| except ImportError: | |
| print("β οΈ Unstructured not available - fallback text extraction disabled") | |
| partition = None | |
| try: | |
| from pylate import models, indexes, retrieve | |
| print("β PyLate loaded") | |
| except ImportError as e: | |
| print(f"β PyLate failed to load: {e}") | |
| print("π Attempting to install PyLate...") | |
| install_package('pylate==1.2.0', quiet=False) | |
| try: | |
| from pylate import models, indexes, retrieve | |
| print("β PyLate loaded after installation") | |
| except ImportError: | |
| print("β PyLate installation failed - core functionality unavailable") | |
| sys.exit(1) | |
| # Set environment variables | |
| os.environ["TRITON_CACHE_DIR"] = "/tmp/triton_cache" | |
| os.environ["TORCH_COMPILE_DISABLE"] = "1" | |
| print("π― All modules loaded successfully!\n") | |
| # Global variables for PyLate components | |
| model = None | |
| index = None | |
| retriever = None | |
| metadata_db = None | |
| # ===== DOCUMENT PROCESSING FUNCTIONS ===== | |
| def extract_text_from_pdf(file_path: str) -> str: | |
| """Extract text from PDF file using PyMuPDF and unstructured as fallback.""" | |
| text = "" | |
| if not fitz: | |
| return "Error: PyMuPDF not available for PDF processing" | |
| try: | |
| # Use PyMuPDF (fitz) - more reliable than PyPDF2 | |
| doc = fitz.open(file_path) | |
| for page in doc: | |
| text += page.get_text() + "\n" | |
| doc.close() | |
| # If no text extracted, try unstructured | |
| if not text.strip() and partition: | |
| elements = partition(filename=file_path) | |
| text = "\n".join([str(element) for element in elements]) | |
| except Exception as e: | |
| # Final fallback to unstructured | |
| if partition: | |
| try: | |
| elements = partition(filename=file_path) | |
| text = "\n".join([str(element) for element in elements]) | |
| except: | |
| text = f"Error: Could not extract text from PDF: {str(e)}" | |
| else: | |
| text = f"Error: Could not extract text from PDF: {str(e)}" | |
| return text.strip() | |
| def extract_text_from_docx(file_path: str) -> str: | |
| """Extract text from DOCX file.""" | |
| if not docx: | |
| return "Error: python-docx not available for DOCX processing" | |
| try: | |
| doc = docx.Document(file_path) | |
| text = "" | |
| for paragraph in doc.paragraphs: | |
| text += paragraph.text + "\n" | |
| return text.strip() | |
| except Exception as e: | |
| return f"Error: Could not extract text from DOCX: {str(e)}" | |
| def extract_text_from_txt(file_path: str) -> str: | |
| """Extract text from TXT file.""" | |
| try: | |
| with open(file_path, 'r', encoding='utf-8') as file: | |
| return file.read().strip() | |
| except UnicodeDecodeError: | |
| try: | |
| with open(file_path, 'r', encoding='latin1') as file: | |
| return file.read().strip() | |
| except Exception as e: | |
| return f"Error: Could not read text file: {str(e)}" | |
| except Exception as e: | |
| return f"Error: Could not read text file: {str(e)}" | |
| def chunk_text(text: str, chunk_size: int = 1000, overlap: int = 100) -> List[Dict[str, Any]]: | |
| """Chunk text with overlap and return metadata.""" | |
| chunks = [] | |
| start = 0 | |
| chunk_index = 0 | |
| while start < len(text): | |
| end = start + chunk_size | |
| chunk_text = text[start:end] | |
| # Try to break at sentence boundary | |
| if end < len(text): | |
| last_period = chunk_text.rfind('.') | |
| last_newline = chunk_text.rfind('\n') | |
| break_point = max(last_period, last_newline) | |
| if break_point > chunk_size * 0.7: | |
| chunk_text = chunk_text[:break_point + 1] | |
| end = start + break_point + 1 | |
| if chunk_text.strip(): | |
| chunks.append({ | |
| 'text': chunk_text.strip(), | |
| 'start': start, | |
| 'end': end, | |
| 'index': chunk_index, | |
| 'length': len(chunk_text.strip()) | |
| }) | |
| chunk_index += 1 | |
| start = max(start + 1, end - overlap) | |
| return chunks | |
| # ===== METADATA DATABASE ===== | |
| def init_metadata_db(): | |
| """Initialize SQLite database for metadata.""" | |
| global metadata_db | |
| db_path = "metadata.db" | |
| metadata_db = sqlite3.connect(db_path, check_same_thread=False) | |
| metadata_db.execute(""" | |
| CREATE TABLE IF NOT EXISTS documents ( | |
| doc_id TEXT PRIMARY KEY, | |
| filename TEXT NOT NULL, | |
| file_hash TEXT NOT NULL, | |
| original_text TEXT NOT NULL, | |
| chunk_index INTEGER NOT NULL, | |
| total_chunks INTEGER NOT NULL, | |
| chunk_start INTEGER NOT NULL, | |
| chunk_end INTEGER NOT NULL, | |
| chunk_size INTEGER NOT NULL, | |
| created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP | |
| ) | |
| """) | |
| metadata_db.execute(""" | |
| CREATE INDEX IF NOT EXISTS idx_filename ON documents(filename); | |
| """) | |
| metadata_db.commit() | |
| def add_document_metadata(doc_id: str, filename: str, file_hash: str, | |
| original_text: str, chunk_info: Dict[str, Any], total_chunks: int): | |
| """Add document metadata to database.""" | |
| global metadata_db | |
| metadata_db.execute(""" | |
| INSERT OR REPLACE INTO documents | |
| (doc_id, filename, file_hash, original_text, chunk_index, total_chunks, | |
| chunk_start, chunk_end, chunk_size) | |
| VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?) | |
| """, ( | |
| doc_id, filename, file_hash, original_text, | |
| chunk_info['index'], total_chunks, | |
| chunk_info['start'], chunk_info['end'], chunk_info['length'] | |
| )) | |
| metadata_db.commit() | |
| def get_document_metadata(doc_id: str) -> Dict[str, Any]: | |
| """Get document metadata by ID.""" | |
| global metadata_db | |
| cursor = metadata_db.execute( | |
| "SELECT * FROM documents WHERE doc_id = ?", (doc_id,) | |
| ) | |
| row = cursor.fetchone() | |
| if row: | |
| columns = [desc[0] for desc in cursor.description] | |
| return dict(zip(columns, row)) | |
| return {} | |
| # ===== PYLATE INITIALIZATION ===== | |
| # Allow 2 minutes for initialization | |
| def initialize_pylate(model_name: str = "colbert-ir/colbertv2.0") -> str: | |
| """Initialize PyLate components on ZeroGPU H200.""" | |
| global model, index, retriever | |
| try: | |
| # Initialize metadata database | |
| init_metadata_db() | |
| # Load ColBERT model | |
| model = models.ColBERT(model_name_or_path=model_name) | |
| # Move to GPU - ZeroGPU provides CUDA access | |
| device_info = "CPU" | |
| if torch.cuda.is_available(): | |
| model = model.to('cuda') | |
| device_name = torch.cuda.get_device_name() | |
| device_info = f"GPU: {device_name}" | |
| # Initialize PLAID index with optimized settings for ZeroGPU | |
| index = indexes.PLAID( | |
| index_folder="./pylate_index", | |
| index_name="documents", | |
| override=True, | |
| kmeans_niters=1, # Reduce k-means iterations for faster setup | |
| nbits=2 # Optimized for memory efficiency | |
| ) | |
| # Initialize retriever | |
| retriever = retrieve.ColBERT(index=index) | |
| return f"β PyLate initialized successfully on ZeroGPU!\nπ₯ Model: {model_name}\nπ― Device: {device_info}\nπΎ VRAM: ~70GB available\nπ Ready for document processing!" | |
| except Exception as e: | |
| return f"β Error initializing PyLate: {str(e)}\n\nPlease check the logs for more details." | |
| # ===== DOCUMENT PROCESSING ===== | |
| # Allow 5 minutes for processing | |
| def process_documents(files, chunk_size: int = 1000, overlap: int = 100) -> str: | |
| """Process uploaded documents and add to index using ZeroGPU.""" | |
| global model, index, metadata_db | |
| if not model or not index: | |
| return "β Please initialize PyLate first!" | |
| if not files: | |
| return "β No files uploaded!" | |
| try: | |
| all_documents = [] | |
| all_doc_ids = [] | |
| processed_files = [] | |
| skipped_files = [] | |
| for file in files: | |
| # Get file info | |
| filename = Path(file.name).name | |
| file_path = file.name | |
| # Calculate file hash | |
| with open(file_path, 'rb') as f: | |
| file_hash = hashlib.md5(f.read()).hexdigest() | |
| # Extract text based on file type | |
| text = "" | |
| if filename.lower().endswith('.pdf'): | |
| if fitz: | |
| text = extract_text_from_pdf(file_path) | |
| else: | |
| skipped_files.append(f"{filename}: PDF processing not available") | |
| continue | |
| elif filename.lower().endswith('.docx'): | |
| if docx: | |
| text = extract_text_from_docx(file_path) | |
| else: | |
| skipped_files.append(f"{filename}: DOCX processing not available") | |
| continue | |
| elif filename.lower().endswith('.txt'): | |
| text = extract_text_from_txt(file_path) | |
| else: | |
| skipped_files.append(f"{filename}: Unsupported file type") | |
| continue | |
| if not text or text.startswith("Error:"): | |
| skipped_files.append(f"{filename}: Failed to extract text") | |
| continue | |
| # Chunk the text | |
| chunks = chunk_text(text, chunk_size, overlap) | |
| if not chunks: | |
| skipped_files.append(f"{filename}: No valid chunks created") | |
| continue | |
| # Process each chunk | |
| for chunk in chunks: | |
| doc_id = f"{filename}_chunk_{chunk['index']}" | |
| all_documents.append(chunk['text']) | |
| all_doc_ids.append(doc_id) | |
| # Store metadata | |
| add_document_metadata( | |
| doc_id=doc_id, | |
| filename=filename, | |
| file_hash=file_hash, | |
| original_text=chunk['text'], | |
| chunk_info=chunk, | |
| total_chunks=len(chunks) | |
| ) | |
| processed_files.append(f"{filename}: {len(chunks)} chunks") | |
| if not all_documents: | |
| return "β No text could be extracted from uploaded files!\n" + "\n".join(skipped_files) | |
| # Encode documents with PyLate on H200 GPU | |
| document_embeddings = model.encode( | |
| all_documents, | |
| batch_size=32, # Optimized batch size for H200's 70GB VRAM | |
| is_query=False, | |
| show_progress_bar=True | |
| ) | |
| # Add to PLAID index | |
| index.add_documents( | |
| documents_ids=all_doc_ids, | |
| documents_embeddings=document_embeddings | |
| ) | |
| result = f"β Successfully processed {len([f for f in files if not any(f.name in skip for skip in skipped_files)])} files on ZeroGPU H200:\n" | |
| result += f"π Total chunks indexed: {len(all_documents)}\n" | |
| result += f"π Documents processed:\n" | |
| for file_info in processed_files: | |
| result += f" β’ {file_info}\n" | |
| if skipped_files: | |
| result += f"\nβ οΈ Skipped files:\n" | |
| for skip_info in skipped_files: | |
| result += f" β’ {skip_info}\n" | |
| result += f"\nπ Document index ready for search!" | |
| return result | |
| except Exception as e: | |
| return f"β Error processing documents: {str(e)}\n\nPlease check your files and try again." | |
| # ===== SEARCH FUNCTION ===== | |
| # 1 minute for search | |
| def search_documents(query: str, k: int = 5, show_chunks: bool = True) -> str: | |
| """Search documents using PyLate on ZeroGPU.""" | |
| global model, retriever, metadata_db | |
| if not model or not retriever: | |
| return "β Please initialize PyLate and process documents first!" | |
| if not query.strip(): | |
| return "β Please enter a search query!" | |
| try: | |
| # Encode query on GPU | |
| query_embedding = model.encode([query], is_query=True) | |
| # Search | |
| results = retriever.retrieve(query_embedding, k=k)[0] | |
| if not results: | |
| return "π No results found for your query.\n\nTry:\nβ’ Different keywords\nβ’ Broader search terms\nβ’ Check if documents were processed correctly" | |
| # Format results with metadata | |
| formatted_results = [f"π **Search Results for:** '{query}' (powered by ZeroGPU H200)\n"] | |
| for i, result in enumerate(results): | |
| doc_id = result['id'] | |
| score = result['score'] | |
| # Get metadata | |
| metadata = get_document_metadata(doc_id) | |
| formatted_results.append(f"## Result {i+1} (Relevance: {score:.3f})") | |
| formatted_results.append( | |
| f"**π File:** {metadata.get('filename', 'Unknown')}") | |
| formatted_results.append( | |
| f"**π Chunk:** {metadata.get('chunk_index', 0) + 1}/{metadata.get('total_chunks', 1)}") | |
| if show_chunks: | |
| text = metadata.get('original_text', '') | |
| if len(text) > 400: | |
| preview = text[:400] + "..." | |
| else: | |
| preview = text | |
| formatted_results.append(f"**π¬ Text:** {preview}") | |
| formatted_results.append("---") | |
| formatted_results.append(f"\nπ― Found {len(results)} relevant results using ColBERT semantic search") | |
| return "\n".join(formatted_results) | |
| except Exception as e: | |
| return f"β Error searching: {str(e)}\n\nPlease try again or check if PyLate is properly initialized." | |
| # ===== GRADIO INTERFACE ===== | |
| def create_interface(): | |
| """Create the Gradio interface for ZeroGPU.""" | |
| with gr.Blocks(title="PyLate ZeroGPU Document Search", theme=gr.themes.Soft()) as demo: | |
| gr.Markdown(""" | |
| # π PyLate ZeroGPU Document Search | |
| ### Powered by ColBERT and NVIDIA H200 (70GB VRAM) | |
| Upload documents, process them with PyLate on ZeroGPU, and perform lightning-fast semantic search! | |
| **π₯ ZeroGPU Features:** | |
| - π― NVIDIA H200 GPU with 70GB VRAM | |
| - β‘ Dynamic GPU allocation (only when needed) | |
| - π Free for HF Pro subscribers | |
| - π Optimized for PyTorch/ColBERT workloads | |
| - π Automatic package installation | |
| """) | |
| # Status indicator | |
| with gr.Row(): | |
| gr.Markdown(f""" | |
| **π System Status:** | |
| - β PyLate: Ready | |
| - β Document Processing: {"PDF β " if fitz else "PDF β"} | {"DOCX β " if docx else "DOCX β"} | TXT β | |
| - β ZeroGPU: Available | |
| """) | |
| with gr.Tab("π Setup"): | |
| gr.Markdown("### Initialize PyLate System on ZeroGPU H200") | |
| model_choice = gr.Dropdown( | |
| choices=[ | |
| "colbert-ir/colbertv2.0", | |
| "sentence-transformers/all-MiniLM-L6-v2" | |
| ], | |
| value="colbert-ir/colbertv2.0", | |
| label="Select ColBERT Model", | |
| info="ColBERT v2.0 is recommended for best performance" | |
| ) | |
| init_btn = gr.Button("π Initialize PyLate on ZeroGPU", variant="primary", size="lg") | |
| init_status = gr.Textbox(label="Initialization Status", lines=6, max_lines=10) | |
| init_btn.click( | |
| initialize_pylate, | |
| inputs=model_choice, | |
| outputs=init_status | |
| ) | |
| with gr.Tab("π Document Upload"): | |
| gr.Markdown("### Upload and Process Documents on H200 GPU") | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_upload = gr.File( | |
| file_count="multiple", | |
| file_types=[".pdf", ".docx", ".txt"], | |
| label="Upload Documents", | |
| info="Supported: PDF, DOCX, TXT files" | |
| ) | |
| with gr.Row(): | |
| chunk_size = gr.Slider( | |
| minimum=500, | |
| maximum=3000, | |
| value=1000, | |
| step=100, | |
| label="Chunk Size (characters)", | |
| info="Larger chunks = more context, smaller chunks = more precise" | |
| ) | |
| overlap = gr.Slider( | |
| minimum=0, | |
| maximum=500, | |
| value=100, | |
| step=50, | |
| label="Chunk Overlap (characters)", | |
| info="Overlap helps maintain context between chunks" | |
| ) | |
| process_btn = gr.Button( | |
| "β‘ Process Documents on ZeroGPU", variant="primary", size="lg") | |
| with gr.Column(): | |
| process_status = gr.Textbox( | |
| label="Processing Status", | |
| lines=15, | |
| max_lines=20, | |
| info="Processing status and results will appear here" | |
| ) | |
| process_btn.click( | |
| process_documents, | |
| inputs=[file_upload, chunk_size, overlap], | |
| outputs=process_status | |
| ) | |
| with gr.Tab("π Search"): | |
| gr.Markdown("### Search Your Documents with H200 Power") | |
| with gr.Row(): | |
| with gr.Column(): | |
| search_query = gr.Textbox( | |
| label="Search Query", | |
| placeholder="Enter your search query... (e.g., 'machine learning algorithms', 'financial projections')", | |
| lines=2, | |
| info="Use natural language - ColBERT understands semantic meaning" | |
| ) | |
| with gr.Row(): | |
| num_results = gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| value=5, | |
| step=1, | |
| label="Number of Results", | |
| info="How many relevant chunks to return" | |
| ) | |
| show_chunks = gr.Checkbox( | |
| value=True, | |
| label="Show Text Chunks", | |
| info="Display the actual text content" | |
| ) | |
| search_btn = gr.Button("π Search with ZeroGPU", variant="primary", size="lg") | |
| with gr.Column(): | |
| search_results = gr.Textbox( | |
| label="Search Results", | |
| lines=18, | |
| max_lines=25, | |
| info="Semantic search results will appear here" | |
| ) | |
| search_btn.click( | |
| search_documents, | |
| inputs=[search_query, num_results, show_chunks], | |
| outputs=search_results | |
| ) | |
| with gr.Tab("βΉοΈ ZeroGPU Info"): | |
| gr.Markdown(""" | |
| ### About ZeroGPU PyLate Search | |
| **π₯ Powered by NVIDIA H200 Tensor Core GPU** | |
| #### π ZeroGPU Features: | |
| - **70GB HBM3 Memory** - Massive capacity for large document collections | |
| - **Dynamic Allocation** - GPU assigned only when functions need it | |
| - **Optimized for PyTorch** - Perfect for ColBERT/PyLate workloads | |
| - **Free for Pro Users** - No additional charges beyond HF Pro | |
| - **Auto Scaling** - Efficient resource usage and queue management | |
| #### π§ How ColBERT Works: | |
| 1. **Late Interaction** - Processes queries and documents separately | |
| 2. **Token-level Matching** - Fine-grained semantic understanding | |
| 3. **Efficient Retrieval** - Fast search with high-quality results | |
| 4. **GPU Acceleration** - Leverages H200 for rapid inference | |
| #### π Performance Benefits: | |
| - **10-100x faster** than CPU-based search | |
| - **Large batch processing** - 32+ documents simultaneously | |
| - **Real-time search** - Sub-second query responses | |
| - **Massive scale** - 70GB VRAM handles huge document sets | |
| #### π οΈ Technical Details: | |
| - **Runtime Package Installation** - Automatically installs dependencies | |
| - **Gradio SDK Required** - ZeroGPU doesn't support Docker | |
| - **Smart Chunking** - Intelligent text segmentation with overlap | |
| - **Metadata Tracking** - SQLite database for chunk information | |
| #### π― Usage Tips: | |
| 1. **Initialize first** - Required before processing documents | |
| 2. **Natural language queries** - ColBERT understands meaning, not just keywords | |
| 3. **Adjust chunk size** - Larger for context, smaller for precision | |
| 4. **Multiple file types** - Mix PDFs, DOCX, and TXT files | |
| 5. **Semantic search** - Try "concepts similar to X" type queries | |
| #### π Privacy & Security: | |
| - Documents processed in-memory only | |
| - No permanent storage of your content | |
| - Processing happens on HF infrastructure | |
| - Automatic cleanup after session ends | |
| --- | |
| **Built with β€οΈ using:** | |
| - π€ PyLate & ColBERT for semantic search | |
| - β‘ ZeroGPU H200 for GPU acceleration | |
| - π¨ Gradio for the interface | |
| - π Python ecosystem for document processing | |
| """) | |
| return demo | |
| # ===== MAIN ===== | |
| if __name__ == "__main__": | |
| print("π Launching PyLate ZeroGPU Document Search interface...") | |
| # Check if running on ZeroGPU | |
| if torch.cuda.is_available(): | |
| print(f"π₯ GPU detected: {torch.cuda.get_device_name()}") | |
| else: | |
| print("π» Running on CPU (GPU will be allocated when @spaces.GPU functions are called)") | |
| demo = create_interface() | |
| demo.launch( | |
| share=False, | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| show_error=True | |
| ) |