Spaces:
Sleeping
Sleeping
| from sklearn.metrics.pairwise import cosine_similarity | |
| import numpy as np | |
| import pandas as pd | |
| import json | |
| import ollama | |
| class EvaluationSystem: | |
| def __init__(self, data_processor, database_handler): | |
| self.data_processor = data_processor | |
| self.db_handler = database_handler | |
| def relevance_scoring(self, query, retrieved_docs, top_k=5): | |
| query_embedding = self.data_processor.embedding_model.encode(query) | |
| doc_embeddings = [self.data_processor.embedding_model.encode(doc['content']) for doc in retrieved_docs] | |
| similarities = cosine_similarity([query_embedding], doc_embeddings)[0] | |
| return np.mean(sorted(similarities, reverse=True)[:top_k]) | |
| def answer_similarity(self, generated_answer, reference_answer): | |
| gen_embedding = self.data_processor.embedding_model.encode(generated_answer) | |
| ref_embedding = self.data_processor.embedding_model.encode(reference_answer) | |
| return cosine_similarity([gen_embedding], [ref_embedding])[0][0] | |
| def human_evaluation(self, video_id, query): | |
| with self.db_handler.conn: | |
| cursor = self.db_handler.conn.cursor() | |
| cursor.execute(''' | |
| SELECT AVG(feedback) FROM user_feedback | |
| WHERE video_id = ? AND query = ? | |
| ''', (video_id, query)) | |
| result = cursor.fetchone() | |
| return result[0] if result[0] is not None else 0 | |
| def evaluate_rag_performance(self, rag_system, test_queries, reference_answers, index_name): | |
| relevance_scores = [] | |
| similarity_scores = [] | |
| human_scores = [] | |
| for query, reference in zip(test_queries, reference_answers): | |
| retrieved_docs = rag_system.data_processor.search(query, num_results=5, method='hybrid', index_name=index_name) | |
| generated_answer, _ = rag_system.query(query, search_method='hybrid', index_name=index_name) | |
| relevance_scores.append(self.relevance_scoring(query, retrieved_docs)) | |
| similarity_scores.append(self.answer_similarity(generated_answer, reference)) | |
| human_scores.append(self.human_evaluation(index_name, query)) # Assuming index_name can be used as video_id | |
| return { | |
| "avg_relevance_score": np.mean(relevance_scores), | |
| "avg_similarity_score": np.mean(similarity_scores), | |
| "avg_human_score": np.mean(human_scores) | |
| } | |
| def llm_as_judge(self, question, generated_answer, prompt_template): | |
| prompt = prompt_template.format(question=question, answer_llm=generated_answer) | |
| try: | |
| response = ollama.chat( | |
| model='phi3.5', | |
| messages=[{"role": "user", "content": prompt}] | |
| ) | |
| evaluation = json.loads(response['message']['content']) | |
| return evaluation | |
| except Exception as e: | |
| print(f"Error in LLM evaluation: {str(e)}") | |
| return None | |
| def evaluate_rag(self, rag_system, ground_truth_file, sample_size=200, prompt_template=None): | |
| try: | |
| ground_truth = pd.read_csv(ground_truth_file) | |
| except FileNotFoundError: | |
| print("Ground truth file not found. Please generate ground truth data first.") | |
| return None | |
| sample = ground_truth.sample(n=min(sample_size, len(ground_truth)), random_state=1) | |
| evaluations = [] | |
| for _, row in sample.iterrows(): | |
| question = row['question'] | |
| video_id = row['video_id'] | |
| index_name = self.db_handler.get_elasticsearch_index_by_youtube_id(video_id) | |
| if not index_name: | |
| print(f"No index found for video {video_id}. Skipping this question.") | |
| continue | |
| try: | |
| answer_llm, _ = rag_system.query(question, search_method='hybrid', index_name=index_name) | |
| except ValueError as e: | |
| print(f"Error querying RAG system: {str(e)}") | |
| continue | |
| if prompt_template: | |
| evaluation = self.llm_as_judge(question, answer_llm, prompt_template) | |
| if evaluation: | |
| evaluations.append(( | |
| str(video_id), | |
| str(question), | |
| str(answer_llm), | |
| str(evaluation.get('Relevance', 'UNKNOWN')), | |
| str(evaluation.get('Explanation', 'No explanation provided')) | |
| )) | |
| else: | |
| # Fallback to cosine similarity if no prompt template is provided | |
| similarity = self.answer_similarity(answer_llm, row.get('reference_answer', '')) | |
| evaluations.append(( | |
| str(video_id), | |
| str(question), | |
| str(answer_llm), | |
| f"Similarity: {similarity}", | |
| "Cosine similarity used for evaluation" | |
| )) | |
| return evaluations |