Spaces:
Runtime error
Runtime error
| from diffusers import LCMScheduler | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.torch_utils import randn_tensor | |
| import torch | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| class LCMSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| denoised: Optional[torch.FloatTensor] = None | |
| class MyLCMScheduler(LCMScheduler): | |
| def set_noise_list(self, noise_list): | |
| self.noise_list = noise_list | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| ) -> Union[LCMSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| self._init_step_index(timestep) | |
| # 1. get previous step value | |
| prev_step_index = self.step_index + 1 | |
| if prev_step_index < len(self.timesteps): | |
| prev_timestep = self.timesteps[prev_step_index] | |
| else: | |
| prev_timestep = timestep | |
| # 2. compute alphas, betas | |
| alpha_prod_t = self.alphas_cumprod[timestep] | |
| alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | |
| beta_prod_t = 1 - alpha_prod_t | |
| beta_prod_t_prev = 1 - alpha_prod_t_prev | |
| # 3. Get scalings for boundary conditions | |
| c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep) | |
| # 4. Compute the predicted original sample x_0 based on the model parameterization | |
| if self.config.prediction_type == "epsilon": # noise-prediction | |
| predicted_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt() | |
| elif self.config.prediction_type == "sample": # x-prediction | |
| predicted_original_sample = model_output | |
| elif self.config.prediction_type == "v_prediction": # v-prediction | |
| predicted_original_sample = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" | |
| " `v_prediction` for `LCMScheduler`." | |
| ) | |
| # 5. Clip or threshold "predicted x_0" | |
| if self.config.thresholding: | |
| predicted_original_sample = self._threshold_sample(predicted_original_sample) | |
| elif self.config.clip_sample: | |
| predicted_original_sample = predicted_original_sample.clamp( | |
| -self.config.clip_sample_range, self.config.clip_sample_range | |
| ) | |
| # 6. Denoise model output using boundary conditions | |
| denoised = c_out * predicted_original_sample + c_skip * sample | |
| # 7. Sample and inject noise z ~ N(0, I) for MultiStep Inference | |
| # Noise is not used on the final timestep of the timestep schedule. | |
| # This also means that noise is not used for one-step sampling. | |
| if self.step_index != self.num_inference_steps - 1: | |
| noise = self.noise_list[self.step_index] | |
| prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise | |
| else: | |
| prev_sample = denoised | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample, denoised) | |
| return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised) | |
| def inv_step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| ) -> Union[LCMSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| self._init_step_index(timestep) | |
| # 1. get previous step value | |
| prev_step_index = self.step_index + 1 | |
| if prev_step_index < len(self.timesteps): | |
| prev_timestep = self.timesteps[prev_step_index] | |
| else: | |
| prev_timestep = timestep | |
| # 2. compute alphas, betas | |
| alpha_prod_t = self.alphas_cumprod[timestep] | |
| alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod | |
| beta_prod_t = 1 - alpha_prod_t | |
| beta_prod_t_prev = 1 - alpha_prod_t_prev | |
| # 3. Get scalings for boundary conditions | |
| c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep) | |
| if self.step_index != self.num_inference_steps - 1: | |
| c_skip_actual = c_skip * alpha_prod_t_prev.sqrt() | |
| c_out_actual = c_out * alpha_prod_t_prev.sqrt() | |
| noise = self.noise_list[self.step_index] * beta_prod_t_prev.sqrt() | |
| else: | |
| c_skip_actual = c_skip | |
| c_out_actual = c_out | |
| noise = 0 | |
| dem = c_out_actual / (alpha_prod_t.sqrt()) + c_skip | |
| eps_mul = beta_prod_t.sqrt() * c_out_actual / (alpha_prod_t.sqrt()) | |
| prev_sample = (sample + eps_mul * model_output - noise) / dem | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample, prev_sample) | |
| return LCMSchedulerOutput(prev_sample=prev_sample, denoised=prev_sample) |