|
|
import os
|
|
|
|
|
|
import torch
|
|
|
|
|
|
import numpy as np
|
|
|
from PIL import Image, ImageOps
|
|
|
from .utils import BIGMAX, ControlWeights, TimestepKeyframeGroup, TimestepKeyframe, get_properly_arranged_t2i_weights
|
|
|
from .logger import logger
|
|
|
|
|
|
|
|
|
class LoadImagesFromDirectory:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"directory": ("STRING", {"default": ""}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
|
|
|
"start_index": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT")
|
|
|
FUNCTION = "load_images"
|
|
|
|
|
|
CATEGORY = ""
|
|
|
|
|
|
def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0):
|
|
|
if not os.path.isdir(directory):
|
|
|
raise FileNotFoundError(f"Directory '{directory} cannot be found.'")
|
|
|
dir_files = os.listdir(directory)
|
|
|
if len(dir_files) == 0:
|
|
|
raise FileNotFoundError(f"No files in directory '{directory}'.")
|
|
|
|
|
|
dir_files = sorted(dir_files)
|
|
|
dir_files = [os.path.join(directory, x) for x in dir_files]
|
|
|
|
|
|
dir_files = dir_files[start_index:]
|
|
|
|
|
|
images = []
|
|
|
masks = []
|
|
|
|
|
|
limit_images = False
|
|
|
if image_load_cap > 0:
|
|
|
limit_images = True
|
|
|
image_count = 0
|
|
|
|
|
|
for image_path in dir_files:
|
|
|
if os.path.isdir(image_path):
|
|
|
continue
|
|
|
if limit_images and image_count >= image_load_cap:
|
|
|
break
|
|
|
i = Image.open(image_path)
|
|
|
i = ImageOps.exif_transpose(i)
|
|
|
image = i.convert("RGB")
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
image = torch.from_numpy(image)[None,]
|
|
|
if 'A' in i.getbands():
|
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
|
|
mask = 1. - torch.from_numpy(mask)
|
|
|
else:
|
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
|
|
images.append(image)
|
|
|
masks.append(mask)
|
|
|
image_count += 1
|
|
|
|
|
|
if len(images) == 0:
|
|
|
raise FileNotFoundError(f"No images could be loaded from directory '{directory}'.")
|
|
|
|
|
|
return (torch.cat(images, dim=0), torch.stack(masks, dim=0), image_count)
|
|
|
|
|
|
|
|
|
class ScaledSoftUniversalWeightsDeprecated:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ),
|
|
|
"flip_weights": ("BOOLEAN", {"default": False}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
|
|
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
|
|
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
|
|
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
|
|
|
FUNCTION = "load_weights"
|
|
|
|
|
|
CATEGORY = ""
|
|
|
|
|
|
def load_weights(self, base_multiplier, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
|
|
|
weights = ControlWeights.universal(base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=cn_extras)
|
|
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
|
|
|
|
|
|
|
|
|
class SoftControlNetWeightsDeprecated:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"weight_00": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_01": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_02": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_03": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_04": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_05": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_06": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_07": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_08": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_09": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"flip_weights": ("BOOLEAN", {"default": False}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
|
|
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
|
|
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
DEPRECATED = True
|
|
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
|
|
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
|
|
|
FUNCTION = "load_weights"
|
|
|
|
|
|
CATEGORY = ""
|
|
|
|
|
|
def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
|
|
|
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights,
|
|
|
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
|
|
|
weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
|
|
|
weight_07, weight_08, weight_09, weight_10, weight_11]
|
|
|
weights_middle = [weight_12]
|
|
|
weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
|
|
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
|
|
|
|
|
|
|
|
|
class CustomControlNetWeightsDeprecated:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_04": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_05": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_06": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_07": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_08": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_09": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"flip_weights": ("BOOLEAN", {"default": False}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
|
|
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
|
|
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
DEPRECATED = True
|
|
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
|
|
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
|
|
|
FUNCTION = "load_weights"
|
|
|
|
|
|
CATEGORY = ""
|
|
|
|
|
|
def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
|
|
|
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights,
|
|
|
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
|
|
|
weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06,
|
|
|
weight_07, weight_08, weight_09, weight_10, weight_11]
|
|
|
weights_middle = [weight_12]
|
|
|
weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras)
|
|
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
|
|
|
|
|
|
|
|
|
class SoftT2IAdapterWeightsDeprecated:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"weight_00": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_01": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_02": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"flip_weights": ("BOOLEAN", {"default": False}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
|
|
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
|
|
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
DEPRECATED = True
|
|
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
|
|
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
|
|
|
FUNCTION = "load_weights"
|
|
|
|
|
|
CATEGORY = ""
|
|
|
|
|
|
def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights,
|
|
|
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
|
|
|
weights = [weight_00, weight_01, weight_02, weight_03]
|
|
|
weights = get_properly_arranged_t2i_weights(weights)
|
|
|
weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
|
|
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
|
|
|
|
|
|
|
|
|
class CustomT2IAdapterWeightsDeprecated:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ),
|
|
|
"flip_weights": ("BOOLEAN", {"default": False}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
|
|
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
|
|
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
DEPRECATED = True
|
|
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
|
|
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
|
|
|
FUNCTION = "load_weights"
|
|
|
|
|
|
CATEGORY = ""
|
|
|
|
|
|
def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights,
|
|
|
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
|
|
|
weights = [weight_00, weight_01, weight_02, weight_03]
|
|
|
weights = get_properly_arranged_t2i_weights(weights)
|
|
|
weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras)
|
|
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
|
|
|
|