|
|
import numpy as np
|
|
|
import time
|
|
|
import torch
|
|
|
import torch.nn.functional as F
|
|
|
import torchvision.transforms as T
|
|
|
import io
|
|
|
import base64
|
|
|
import random
|
|
|
import math
|
|
|
import os
|
|
|
import re
|
|
|
import json
|
|
|
from PIL.PngImagePlugin import PngInfo
|
|
|
try:
|
|
|
import cv2
|
|
|
except:
|
|
|
print("OpenCV not installed")
|
|
|
pass
|
|
|
from PIL import ImageGrab, ImageDraw, ImageFont, Image, ImageSequence, ImageOps
|
|
|
|
|
|
from nodes import MAX_RESOLUTION, SaveImage
|
|
|
from comfy_extras.nodes_mask import ImageCompositeMasked
|
|
|
from comfy.cli_args import args
|
|
|
from comfy.utils import ProgressBar, common_upscale
|
|
|
import folder_paths
|
|
|
import model_management
|
|
|
|
|
|
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
|
|
class ImagePass:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
},
|
|
|
"optional": {
|
|
|
"image": ("IMAGE",),
|
|
|
},
|
|
|
}
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "passthrough"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Passes the image through without modifying it.
|
|
|
"""
|
|
|
|
|
|
def passthrough(self, image=None):
|
|
|
return image,
|
|
|
|
|
|
class ColorMatch:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(cls):
|
|
|
return {
|
|
|
"required": {
|
|
|
"image_ref": ("IMAGE",),
|
|
|
"image_target": ("IMAGE",),
|
|
|
"method": (
|
|
|
[
|
|
|
'mkl',
|
|
|
'hm',
|
|
|
'reinhard',
|
|
|
'mvgd',
|
|
|
'hm-mvgd-hm',
|
|
|
'hm-mkl-hm',
|
|
|
], {
|
|
|
"default": 'mkl'
|
|
|
}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("image",)
|
|
|
FUNCTION = "colormatch"
|
|
|
DESCRIPTION = """
|
|
|
color-matcher enables color transfer across images which comes in handy for automatic
|
|
|
color-grading of photographs, paintings and film sequences as well as light-field
|
|
|
and stopmotion corrections.
|
|
|
|
|
|
The methods behind the mappings are based on the approach from Reinhard et al.,
|
|
|
the Monge-Kantorovich Linearization (MKL) as proposed by Pitie et al. and our analytical solution
|
|
|
to a Multi-Variate Gaussian Distribution (MVGD) transfer in conjunction with classical histogram
|
|
|
matching. As shown below our HM-MVGD-HM compound outperforms existing methods.
|
|
|
https://github.com/hahnec/color-matcher/
|
|
|
|
|
|
"""
|
|
|
|
|
|
def colormatch(self, image_ref, image_target, method, strength=1.0):
|
|
|
try:
|
|
|
from color_matcher import ColorMatcher
|
|
|
except:
|
|
|
raise Exception("Can't import color-matcher, did you install requirements.txt? Manual install: pip install color-matcher")
|
|
|
cm = ColorMatcher()
|
|
|
image_ref = image_ref.cpu()
|
|
|
image_target = image_target.cpu()
|
|
|
batch_size = image_target.size(0)
|
|
|
out = []
|
|
|
images_target = image_target.squeeze()
|
|
|
images_ref = image_ref.squeeze()
|
|
|
|
|
|
image_ref_np = images_ref.numpy()
|
|
|
images_target_np = images_target.numpy()
|
|
|
|
|
|
if image_ref.size(0) > 1 and image_ref.size(0) != batch_size:
|
|
|
raise ValueError("ColorMatch: Use either single reference image or a matching batch of reference images.")
|
|
|
|
|
|
for i in range(batch_size):
|
|
|
image_target_np = images_target_np if batch_size == 1 else images_target[i].numpy()
|
|
|
image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy()
|
|
|
try:
|
|
|
image_result = cm.transfer(src=image_target_np, ref=image_ref_np_i, method=method)
|
|
|
except BaseException as e:
|
|
|
print(f"Error occurred during transfer: {e}")
|
|
|
break
|
|
|
|
|
|
image_result = image_target_np + strength * (image_result - image_target_np)
|
|
|
out.append(torch.from_numpy(image_result))
|
|
|
|
|
|
out = torch.stack(out, dim=0).to(torch.float32)
|
|
|
out.clamp_(0, 1)
|
|
|
return (out,)
|
|
|
|
|
|
class SaveImageWithAlpha:
|
|
|
def __init__(self):
|
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
self.type = "output"
|
|
|
self.prefix_append = ""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required":
|
|
|
{"images": ("IMAGE", ),
|
|
|
"mask": ("MASK", ),
|
|
|
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
|
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ()
|
|
|
FUNCTION = "save_images_alpha"
|
|
|
OUTPUT_NODE = True
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Saves an image and mask as .PNG with the mask as the alpha channel.
|
|
|
"""
|
|
|
|
|
|
def save_images_alpha(self, images, mask, filename_prefix="ComfyUI_image_with_alpha", prompt=None, extra_pnginfo=None):
|
|
|
from PIL.PngImagePlugin import PngInfo
|
|
|
filename_prefix += self.prefix_append
|
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
|
|
results = list()
|
|
|
if mask.dtype == torch.float16:
|
|
|
mask = mask.to(torch.float32)
|
|
|
def file_counter():
|
|
|
max_counter = 0
|
|
|
|
|
|
for existing_file in os.listdir(full_output_folder):
|
|
|
|
|
|
match = re.fullmatch(fr"{filename}_(\d+)_?\.[a-zA-Z0-9]+", existing_file)
|
|
|
if match:
|
|
|
|
|
|
file_counter = int(match.group(1))
|
|
|
|
|
|
if file_counter > max_counter:
|
|
|
max_counter = file_counter
|
|
|
return max_counter
|
|
|
|
|
|
for image, alpha in zip(images, mask):
|
|
|
i = 255. * image.cpu().numpy()
|
|
|
a = 255. * alpha.cpu().numpy()
|
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
|
|
|
|
|
|
|
a_resized = Image.fromarray(a).resize(img.size, Image.LANCZOS)
|
|
|
a_resized = np.clip(a_resized, 0, 255).astype(np.uint8)
|
|
|
img.putalpha(Image.fromarray(a_resized, mode='L'))
|
|
|
metadata = None
|
|
|
if not args.disable_metadata:
|
|
|
metadata = PngInfo()
|
|
|
if prompt is not None:
|
|
|
metadata.add_text("prompt", json.dumps(prompt))
|
|
|
if extra_pnginfo is not None:
|
|
|
for x in extra_pnginfo:
|
|
|
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
|
|
|
|
|
|
|
|
counter = file_counter() + 1
|
|
|
file = f"{filename}_{counter:05}.png"
|
|
|
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
|
|
|
results.append({
|
|
|
"filename": file,
|
|
|
"subfolder": subfolder,
|
|
|
"type": self.type
|
|
|
})
|
|
|
|
|
|
return { "ui": { "images": results } }
|
|
|
|
|
|
class ImageConcanate:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"image1": ("IMAGE",),
|
|
|
"image2": ("IMAGE",),
|
|
|
"direction": (
|
|
|
[ 'right',
|
|
|
'down',
|
|
|
'left',
|
|
|
'up',
|
|
|
],
|
|
|
{
|
|
|
"default": 'right'
|
|
|
}),
|
|
|
"match_image_size": ("BOOLEAN", {"default": True}),
|
|
|
}}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "concanate"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Concatenates the image2 to image1 in the specified direction.
|
|
|
"""
|
|
|
|
|
|
def concanate(self, image1, image2, direction, match_image_size, first_image_shape=None):
|
|
|
|
|
|
batch_size1 = image1.shape[0]
|
|
|
batch_size2 = image2.shape[0]
|
|
|
|
|
|
if batch_size1 != batch_size2:
|
|
|
|
|
|
max_batch_size = max(batch_size1, batch_size2)
|
|
|
repeats1 = max_batch_size // batch_size1
|
|
|
repeats2 = max_batch_size // batch_size2
|
|
|
|
|
|
|
|
|
image1 = image1.repeat(repeats1, 1, 1, 1)
|
|
|
image2 = image2.repeat(repeats2, 1, 1, 1)
|
|
|
|
|
|
if match_image_size:
|
|
|
|
|
|
target_shape = first_image_shape if first_image_shape is not None else image1.shape
|
|
|
|
|
|
original_height = image2.shape[1]
|
|
|
original_width = image2.shape[2]
|
|
|
original_aspect_ratio = original_width / original_height
|
|
|
|
|
|
if direction in ['left', 'right']:
|
|
|
|
|
|
target_height = target_shape[1]
|
|
|
target_width = int(target_height * original_aspect_ratio)
|
|
|
elif direction in ['up', 'down']:
|
|
|
|
|
|
target_width = target_shape[2]
|
|
|
target_height = int(target_width / original_aspect_ratio)
|
|
|
|
|
|
|
|
|
image2_for_upscale = image2.movedim(-1, 1)
|
|
|
|
|
|
|
|
|
image2_resized = common_upscale(image2_for_upscale, target_width, target_height, "lanczos", "disabled")
|
|
|
|
|
|
|
|
|
image2_resized = image2_resized.movedim(1, -1)
|
|
|
else:
|
|
|
image2_resized = image2
|
|
|
|
|
|
|
|
|
channels_image1 = image1.shape[-1]
|
|
|
channels_image2 = image2_resized.shape[-1]
|
|
|
|
|
|
if channels_image1 != channels_image2:
|
|
|
if channels_image1 < channels_image2:
|
|
|
|
|
|
alpha_channel = torch.ones((*image1.shape[:-1], channels_image2 - channels_image1), device=image1.device)
|
|
|
image1 = torch.cat((image1, alpha_channel), dim=-1)
|
|
|
else:
|
|
|
|
|
|
alpha_channel = torch.ones((*image2_resized.shape[:-1], channels_image1 - channels_image2), device=image2_resized.device)
|
|
|
image2_resized = torch.cat((image2_resized, alpha_channel), dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
if direction == 'right':
|
|
|
concatenated_image = torch.cat((image1, image2_resized), dim=2)
|
|
|
elif direction == 'down':
|
|
|
concatenated_image = torch.cat((image1, image2_resized), dim=1)
|
|
|
elif direction == 'left':
|
|
|
concatenated_image = torch.cat((image2_resized, image1), dim=2)
|
|
|
elif direction == 'up':
|
|
|
concatenated_image = torch.cat((image2_resized, image1), dim=1)
|
|
|
return concatenated_image,
|
|
|
|
|
|
import torch
|
|
|
|
|
|
class ImageConcatFromBatch:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"images": ("IMAGE",),
|
|
|
"num_columns": ("INT", {"default": 3, "min": 1, "max": 255, "step": 1}),
|
|
|
"match_image_size": ("BOOLEAN", {"default": False}),
|
|
|
"max_resolution": ("INT", {"default": 4096}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "concat"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Concatenates images from a batch into a grid with a specified number of columns.
|
|
|
"""
|
|
|
|
|
|
def concat(self, images, num_columns, match_image_size, max_resolution):
|
|
|
|
|
|
batch_size, height, width, channels = images.shape
|
|
|
num_rows = (batch_size + num_columns - 1) // num_columns
|
|
|
|
|
|
print(f"Initial dimensions: batch_size={batch_size}, height={height}, width={width}, channels={channels}")
|
|
|
print(f"num_rows={num_rows}, num_columns={num_columns}")
|
|
|
|
|
|
if match_image_size:
|
|
|
target_shape = images[0].shape
|
|
|
|
|
|
resized_images = []
|
|
|
for image in images:
|
|
|
original_height = image.shape[0]
|
|
|
original_width = image.shape[1]
|
|
|
original_aspect_ratio = original_width / original_height
|
|
|
|
|
|
if original_aspect_ratio > 1:
|
|
|
target_height = target_shape[0]
|
|
|
target_width = int(target_height * original_aspect_ratio)
|
|
|
else:
|
|
|
target_width = target_shape[1]
|
|
|
target_height = int(target_width / original_aspect_ratio)
|
|
|
|
|
|
print(f"Resizing image from ({original_height}, {original_width}) to ({target_height}, {target_width})")
|
|
|
|
|
|
|
|
|
resized_image = common_upscale(image.movedim(-1, 0), target_width, target_height, "lanczos", "disabled")
|
|
|
resized_image = resized_image.movedim(0, -1)
|
|
|
resized_images.append(resized_image)
|
|
|
|
|
|
|
|
|
images = torch.stack(resized_images)
|
|
|
|
|
|
height, width = target_shape[:2]
|
|
|
|
|
|
|
|
|
grid_height = num_rows * height
|
|
|
grid_width = num_columns * width
|
|
|
|
|
|
print(f"Grid dimensions before scaling: grid_height={grid_height}, grid_width={grid_width}")
|
|
|
|
|
|
|
|
|
scale_factor = min(max_resolution / grid_height, max_resolution / grid_width, 1.0)
|
|
|
|
|
|
|
|
|
scaled_height = height * scale_factor
|
|
|
scaled_width = width * scale_factor
|
|
|
|
|
|
|
|
|
height = max(1, int(round(scaled_height / 8) * 8))
|
|
|
width = max(1, int(round(scaled_width / 8) * 8))
|
|
|
|
|
|
if abs(scaled_height - height) > 4:
|
|
|
height = max(1, int(round((scaled_height + 4) / 8) * 8))
|
|
|
if abs(scaled_width - width) > 4:
|
|
|
width = max(1, int(round((scaled_width + 4) / 8) * 8))
|
|
|
|
|
|
|
|
|
grid_height = num_rows * height
|
|
|
grid_width = num_columns * width
|
|
|
print(f"Grid dimensions after scaling: grid_height={grid_height}, grid_width={grid_width}")
|
|
|
print(f"Final image dimensions: height={height}, width={width}")
|
|
|
|
|
|
grid = torch.zeros((grid_height, grid_width, channels), dtype=images.dtype)
|
|
|
|
|
|
for idx, image in enumerate(images):
|
|
|
resized_image = torch.nn.functional.interpolate(image.unsqueeze(0).permute(0, 3, 1, 2), size=(height, width), mode="bilinear").squeeze().permute(1, 2, 0)
|
|
|
row = idx // num_columns
|
|
|
col = idx % num_columns
|
|
|
grid[row*height:(row+1)*height, col*width:(col+1)*width, :] = resized_image
|
|
|
|
|
|
return grid.unsqueeze(0),
|
|
|
|
|
|
class ImageGridComposite2x2:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"image1": ("IMAGE",),
|
|
|
"image2": ("IMAGE",),
|
|
|
"image3": ("IMAGE",),
|
|
|
"image4": ("IMAGE",),
|
|
|
}}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "compositegrid"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Concatenates the 4 input images into a 2x2 grid.
|
|
|
"""
|
|
|
|
|
|
def compositegrid(self, image1, image2, image3, image4):
|
|
|
top_row = torch.cat((image1, image2), dim=2)
|
|
|
bottom_row = torch.cat((image3, image4), dim=2)
|
|
|
grid = torch.cat((top_row, bottom_row), dim=1)
|
|
|
return (grid,)
|
|
|
|
|
|
class ImageGridComposite3x3:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"image1": ("IMAGE",),
|
|
|
"image2": ("IMAGE",),
|
|
|
"image3": ("IMAGE",),
|
|
|
"image4": ("IMAGE",),
|
|
|
"image5": ("IMAGE",),
|
|
|
"image6": ("IMAGE",),
|
|
|
"image7": ("IMAGE",),
|
|
|
"image8": ("IMAGE",),
|
|
|
"image9": ("IMAGE",),
|
|
|
}}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "compositegrid"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Concatenates the 9 input images into a 3x3 grid.
|
|
|
"""
|
|
|
|
|
|
def compositegrid(self, image1, image2, image3, image4, image5, image6, image7, image8, image9):
|
|
|
top_row = torch.cat((image1, image2, image3), dim=2)
|
|
|
mid_row = torch.cat((image4, image5, image6), dim=2)
|
|
|
bottom_row = torch.cat((image7, image8, image9), dim=2)
|
|
|
grid = torch.cat((top_row, mid_row, bottom_row), dim=1)
|
|
|
return (grid,)
|
|
|
|
|
|
class ImageBatchTestPattern:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"batch_size": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
|
|
|
"start_from": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
|
|
|
"text_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
|
|
|
"text_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
|
|
|
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
|
|
|
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
|
|
|
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
|
|
|
"font_size": ("INT", {"default": 255,"min": 8, "max": 4096, "step": 1}),
|
|
|
}}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "generatetestpattern"
|
|
|
CATEGORY = "KJNodes/text"
|
|
|
|
|
|
def generatetestpattern(self, batch_size, font, font_size, start_from, width, height, text_x, text_y):
|
|
|
out = []
|
|
|
|
|
|
numbers = np.arange(start_from, start_from + batch_size)
|
|
|
font_path = folder_paths.get_full_path("kjnodes_fonts", font)
|
|
|
|
|
|
for number in numbers:
|
|
|
|
|
|
image = Image.new("RGB", (width, height), color='black')
|
|
|
draw = ImageDraw.Draw(image)
|
|
|
|
|
|
|
|
|
font_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
|
|
|
|
|
font = ImageFont.truetype(font_path, font_size)
|
|
|
|
|
|
|
|
|
text = str(number)
|
|
|
|
|
|
try:
|
|
|
draw.text((text_x, text_y), text, font=font, fill=font_color, features=['-liga'])
|
|
|
except:
|
|
|
draw.text((text_x, text_y), text, font=font, fill=font_color,)
|
|
|
|
|
|
|
|
|
image_np = np.array(image).astype(np.float32) / 255.0
|
|
|
image_tensor = torch.from_numpy(image_np).unsqueeze(0)
|
|
|
out.append(image_tensor)
|
|
|
out_tensor = torch.cat(out, dim=0)
|
|
|
|
|
|
return (out_tensor,)
|
|
|
|
|
|
class ImageGrabPIL:
|
|
|
|
|
|
@classmethod
|
|
|
def IS_CHANGED(cls):
|
|
|
|
|
|
return
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("image",)
|
|
|
FUNCTION = "screencap"
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
DESCRIPTION = """
|
|
|
Captures an area specified by screen coordinates.
|
|
|
Can be used for realtime diffusion with autoqueue.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
|
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
|
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
|
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
|
"num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
|
|
|
"delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def screencap(self, x, y, width, height, num_frames, delay):
|
|
|
start_time = time.time()
|
|
|
captures = []
|
|
|
bbox = (x, y, x + width, y + height)
|
|
|
|
|
|
for _ in range(num_frames):
|
|
|
|
|
|
screen_capture = ImageGrab.grab(bbox=bbox)
|
|
|
screen_capture_torch = torch.from_numpy(np.array(screen_capture, dtype=np.float32) / 255.0).unsqueeze(0)
|
|
|
captures.append(screen_capture_torch)
|
|
|
|
|
|
|
|
|
if num_frames > 1:
|
|
|
time.sleep(delay)
|
|
|
|
|
|
elapsed_time = time.time() - start_time
|
|
|
print(f"screengrab took {elapsed_time} seconds.")
|
|
|
|
|
|
return (torch.cat(captures, dim=0),)
|
|
|
|
|
|
class Screencap_mss:
|
|
|
|
|
|
@classmethod
|
|
|
def IS_CHANGED(s, **kwargs):
|
|
|
return float("NaN")
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("image",)
|
|
|
FUNCTION = "screencap"
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
DESCRIPTION = """
|
|
|
Captures an area specified by screen coordinates.
|
|
|
Can be used for realtime diffusion with autoqueue.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"x": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}),
|
|
|
"y": ("INT", {"default": 0,"min": 0, "max": 10000, "step": 1}),
|
|
|
"width": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}),
|
|
|
"height": ("INT", {"default": 512,"min": 0, "max": 10000, "step": 1}),
|
|
|
"num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
|
|
|
"delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def screencap(self, x, y, width, height, num_frames, delay):
|
|
|
from mss import mss
|
|
|
captures = []
|
|
|
with mss() as sct:
|
|
|
bbox = {'top': y, 'left': x, 'width': width, 'height': height}
|
|
|
|
|
|
for _ in range(num_frames):
|
|
|
sct_img = sct.grab(bbox)
|
|
|
img_np = np.array(sct_img)
|
|
|
img_torch = torch.from_numpy(img_np[..., [2, 1, 0]]).float() / 255.0
|
|
|
captures.append(img_torch)
|
|
|
|
|
|
if num_frames > 1:
|
|
|
time.sleep(delay)
|
|
|
|
|
|
return (torch.stack(captures, 0),)
|
|
|
|
|
|
class WebcamCaptureCV2:
|
|
|
|
|
|
@classmethod
|
|
|
def IS_CHANGED(cls):
|
|
|
return
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("image",)
|
|
|
FUNCTION = "capture"
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
DESCRIPTION = """
|
|
|
Captures a frame from a webcam using CV2.
|
|
|
Can be used for realtime diffusion with autoqueue.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
|
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
|
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
|
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
|
"cam_index": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
|
|
|
"release": ("BOOLEAN", {"default": False}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def capture(self, x, y, cam_index, width, height, release):
|
|
|
|
|
|
if not hasattr(self, "cap") or self.cap is None or self.current_cam_index != cam_index:
|
|
|
if hasattr(self, "cap") and self.cap is not None:
|
|
|
self.cap.release()
|
|
|
self.current_cam_index = cam_index
|
|
|
self.cap = cv2.VideoCapture(cam_index)
|
|
|
try:
|
|
|
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
|
|
|
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
|
|
|
except:
|
|
|
pass
|
|
|
if not self.cap.isOpened():
|
|
|
raise Exception("Could not open webcam")
|
|
|
|
|
|
ret, frame = self.cap.read()
|
|
|
if not ret:
|
|
|
raise Exception("Failed to capture image from webcam")
|
|
|
|
|
|
|
|
|
frame = frame[y:y+height, x:x+width]
|
|
|
img_torch = torch.from_numpy(frame[..., [2, 1, 0]]).float() / 255.0
|
|
|
|
|
|
if release:
|
|
|
self.cap.release()
|
|
|
self.cap = None
|
|
|
|
|
|
return (img_torch.unsqueeze(0),)
|
|
|
|
|
|
class AddLabel:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"image":("IMAGE",),
|
|
|
"text_x": ("INT", {"default": 10, "min": 0, "max": 4096, "step": 1}),
|
|
|
"text_y": ("INT", {"default": 2, "min": 0, "max": 4096, "step": 1}),
|
|
|
"height": ("INT", {"default": 48, "min": 0, "max": 4096, "step": 1}),
|
|
|
"font_size": ("INT", {"default": 32, "min": 0, "max": 4096, "step": 1}),
|
|
|
"font_color": ("STRING", {"default": "white"}),
|
|
|
"label_color": ("STRING", {"default": "black"}),
|
|
|
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
|
|
|
"text": ("STRING", {"default": "Text"}),
|
|
|
"direction": (
|
|
|
[ 'up',
|
|
|
'down',
|
|
|
'left',
|
|
|
'right',
|
|
|
'overlay'
|
|
|
],
|
|
|
{
|
|
|
"default": 'up'
|
|
|
}),
|
|
|
},
|
|
|
"optional":{
|
|
|
"caption": ("STRING", {"default": "", "forceInput": True}),
|
|
|
}
|
|
|
}
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "addlabel"
|
|
|
CATEGORY = "KJNodes/text"
|
|
|
DESCRIPTION = """
|
|
|
Creates a new with the given text, and concatenates it to
|
|
|
either above or below the input image.
|
|
|
Note that this changes the input image's height!
|
|
|
Fonts are loaded from this folder:
|
|
|
ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts
|
|
|
"""
|
|
|
|
|
|
def addlabel(self, image, text_x, text_y, text, height, font_size, font_color, label_color, font, direction, caption=""):
|
|
|
batch_size = image.shape[0]
|
|
|
width = image.shape[2]
|
|
|
|
|
|
font_path = os.path.join(script_directory, "fonts", "TTNorms-Black.otf") if font == "TTNorms-Black.otf" else folder_paths.get_full_path("kjnodes_fonts", font)
|
|
|
|
|
|
def process_image(input_image, caption_text):
|
|
|
if direction == 'overlay':
|
|
|
pil_image = Image.fromarray((input_image.cpu().numpy() * 255).astype(np.uint8))
|
|
|
else:
|
|
|
label_image = Image.new("RGB", (width, height), label_color)
|
|
|
pil_image = label_image
|
|
|
|
|
|
draw = ImageDraw.Draw(pil_image)
|
|
|
font = ImageFont.truetype(font_path, font_size)
|
|
|
|
|
|
words = caption_text.split()
|
|
|
|
|
|
lines = []
|
|
|
current_line = []
|
|
|
current_line_width = 0
|
|
|
for word in words:
|
|
|
word_width = font.getbbox(word)[2]
|
|
|
if current_line_width + word_width <= width - 2 * text_x:
|
|
|
current_line.append(word)
|
|
|
current_line_width += word_width + font.getbbox(" ")[2]
|
|
|
else:
|
|
|
lines.append(" ".join(current_line))
|
|
|
current_line = [word]
|
|
|
current_line_width = word_width
|
|
|
|
|
|
if current_line:
|
|
|
lines.append(" ".join(current_line))
|
|
|
|
|
|
y_offset = text_y
|
|
|
for line in lines:
|
|
|
try:
|
|
|
draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga'])
|
|
|
except:
|
|
|
draw.text((text_x, y_offset), line, font=font, fill=font_color)
|
|
|
y_offset += font_size
|
|
|
|
|
|
processed_image = torch.from_numpy(np.array(pil_image).astype(np.float32) / 255.0).unsqueeze(0)
|
|
|
return processed_image
|
|
|
|
|
|
if caption == "":
|
|
|
processed_images = [process_image(img, text) for img in image]
|
|
|
else:
|
|
|
assert len(caption) == batch_size, f"Number of captions {(len(caption))} does not match number of images"
|
|
|
processed_images = [process_image(img, cap) for img, cap in zip(image, caption)]
|
|
|
processed_batch = torch.cat(processed_images, dim=0)
|
|
|
|
|
|
|
|
|
if direction == 'down':
|
|
|
combined_images = torch.cat((image, processed_batch), dim=1)
|
|
|
elif direction == 'up':
|
|
|
combined_images = torch.cat((processed_batch, image), dim=1)
|
|
|
elif direction == 'left':
|
|
|
processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2)
|
|
|
combined_images = torch.cat((processed_batch, image), dim=2)
|
|
|
elif direction == 'right':
|
|
|
processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2)
|
|
|
combined_images = torch.cat((image, processed_batch), dim=2)
|
|
|
else:
|
|
|
combined_images = processed_batch
|
|
|
|
|
|
return (combined_images,)
|
|
|
|
|
|
class GetImageSizeAndCount:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"image": ("IMAGE",),
|
|
|
}}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE","INT", "INT", "INT",)
|
|
|
RETURN_NAMES = ("image", "width", "height", "count",)
|
|
|
FUNCTION = "getsize"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Returns width, height and batch size of the image,
|
|
|
and passes it through unchanged.
|
|
|
|
|
|
"""
|
|
|
|
|
|
def getsize(self, image):
|
|
|
width = image.shape[2]
|
|
|
height = image.shape[1]
|
|
|
count = image.shape[0]
|
|
|
return {"ui": {
|
|
|
"text": [f"{count}x{width}x{height}"]},
|
|
|
"result": (image, width, height, count)
|
|
|
}
|
|
|
|
|
|
class ImageBatchRepeatInterleaving:
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "repeat"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Repeats each image in a batch by the specified number of times.
|
|
|
Example batch of 5 images: 0, 1 ,2, 3, 4
|
|
|
with repeats 2 becomes batch of 10 images: 0, 0, 1, 1, 2, 2, 3, 3, 4, 4
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"images": ("IMAGE",),
|
|
|
"repeats": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def repeat(self, images, repeats):
|
|
|
|
|
|
repeated_images = torch.repeat_interleave(images, repeats=repeats, dim=0)
|
|
|
return (repeated_images, )
|
|
|
|
|
|
class ImageUpscaleWithModelBatched:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": { "upscale_model": ("UPSCALE_MODEL",),
|
|
|
"images": ("IMAGE",),
|
|
|
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
|
|
|
}}
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "upscale"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Same as ComfyUI native model upscaling node,
|
|
|
but allows setting sub-batches for reduced VRAM usage.
|
|
|
"""
|
|
|
def upscale(self, upscale_model, images, per_batch):
|
|
|
|
|
|
device = model_management.get_torch_device()
|
|
|
upscale_model.to(device)
|
|
|
in_img = images.movedim(-1,-3)
|
|
|
|
|
|
steps = in_img.shape[0]
|
|
|
pbar = ProgressBar(steps)
|
|
|
t = []
|
|
|
|
|
|
for start_idx in range(0, in_img.shape[0], per_batch):
|
|
|
sub_images = upscale_model(in_img[start_idx:start_idx+per_batch].to(device))
|
|
|
t.append(sub_images.cpu())
|
|
|
|
|
|
batch_count = sub_images.shape[0]
|
|
|
|
|
|
pbar.update(batch_count)
|
|
|
upscale_model.cpu()
|
|
|
|
|
|
t = torch.cat(t, dim=0).permute(0, 2, 3, 1).cpu()
|
|
|
|
|
|
return (t,)
|
|
|
|
|
|
class ImageNormalize_Neg1_To_1:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"images": ("IMAGE",),
|
|
|
|
|
|
}}
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "normalize"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Normalize the images to be in the range [-1, 1]
|
|
|
"""
|
|
|
|
|
|
def normalize(self,images):
|
|
|
images = images * 2.0 - 1.0
|
|
|
return (images,)
|
|
|
|
|
|
class RemapImageRange:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"image": ("IMAGE",),
|
|
|
"min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}),
|
|
|
"max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}),
|
|
|
"clamp": ("BOOLEAN", {"default": True}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "remap"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Remaps the image values to the specified range.
|
|
|
"""
|
|
|
|
|
|
def remap(self, image, min, max, clamp):
|
|
|
if image.dtype == torch.float16:
|
|
|
image = image.to(torch.float32)
|
|
|
image = min + image * (max - min)
|
|
|
if clamp:
|
|
|
image = torch.clamp(image, min=0.0, max=1.0)
|
|
|
return (image, )
|
|
|
|
|
|
class SplitImageChannels:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"image": ("IMAGE",),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK")
|
|
|
RETURN_NAMES = ("red", "green", "blue", "mask")
|
|
|
FUNCTION = "split"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Splits image channels into images where the selected channel
|
|
|
is repeated for all channels, and the alpha as a mask.
|
|
|
"""
|
|
|
|
|
|
def split(self, image):
|
|
|
red = image[:, :, :, 0:1]
|
|
|
green = image[:, :, :, 1:2]
|
|
|
blue = image[:, :, :, 2:3]
|
|
|
alpha = image[:, :, :, 3:4]
|
|
|
alpha = alpha.squeeze(-1)
|
|
|
|
|
|
|
|
|
red = torch.cat([red, red, red], dim=3)
|
|
|
green = torch.cat([green, green, green], dim=3)
|
|
|
blue = torch.cat([blue, blue, blue], dim=3)
|
|
|
return (red, green, blue, alpha)
|
|
|
|
|
|
class MergeImageChannels:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"red": ("IMAGE",),
|
|
|
"green": ("IMAGE",),
|
|
|
"blue": ("IMAGE",),
|
|
|
|
|
|
},
|
|
|
"optional": {
|
|
|
"alpha": ("MASK", {"default": None}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("image",)
|
|
|
FUNCTION = "merge"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Merges channel data into an image.
|
|
|
"""
|
|
|
|
|
|
def merge(self, red, green, blue, alpha=None):
|
|
|
image = torch.stack([
|
|
|
red[..., 0, None],
|
|
|
green[..., 1, None],
|
|
|
blue[..., 2, None]
|
|
|
], dim=-1)
|
|
|
image = image.squeeze(-2)
|
|
|
if alpha is not None:
|
|
|
image = torch.cat([image, alpha.unsqueeze(-1)], dim=-1)
|
|
|
return (image,)
|
|
|
|
|
|
class ImagePadForOutpaintMasked:
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"image": ("IMAGE",),
|
|
|
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
|
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
|
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
|
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
|
"feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"mask": ("MASK",),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK")
|
|
|
FUNCTION = "expand_image"
|
|
|
|
|
|
CATEGORY = "image"
|
|
|
|
|
|
def expand_image(self, image, left, top, right, bottom, feathering, mask=None):
|
|
|
if mask is not None:
|
|
|
if torch.allclose(mask, torch.zeros_like(mask)):
|
|
|
print("Warning: The incoming mask is fully black. Handling it as None.")
|
|
|
mask = None
|
|
|
B, H, W, C = image.size()
|
|
|
|
|
|
new_image = torch.ones(
|
|
|
(B, H + top + bottom, W + left + right, C),
|
|
|
dtype=torch.float32,
|
|
|
) * 0.5
|
|
|
|
|
|
new_image[:, top:top + H, left:left + W, :] = image
|
|
|
|
|
|
if mask is None:
|
|
|
new_mask = torch.ones(
|
|
|
(B, H + top + bottom, W + left + right),
|
|
|
dtype=torch.float32,
|
|
|
)
|
|
|
|
|
|
t = torch.zeros(
|
|
|
(B, H, W),
|
|
|
dtype=torch.float32
|
|
|
)
|
|
|
else:
|
|
|
|
|
|
mask = F.pad(mask, (left, right, top, bottom), mode='constant', value=0)
|
|
|
mask = 1 - mask
|
|
|
t = torch.zeros_like(mask)
|
|
|
|
|
|
if feathering > 0 and feathering * 2 < H and feathering * 2 < W:
|
|
|
|
|
|
for i in range(H):
|
|
|
for j in range(W):
|
|
|
dt = i if top != 0 else H
|
|
|
db = H - i if bottom != 0 else H
|
|
|
|
|
|
dl = j if left != 0 else W
|
|
|
dr = W - j if right != 0 else W
|
|
|
|
|
|
d = min(dt, db, dl, dr)
|
|
|
|
|
|
if d >= feathering:
|
|
|
continue
|
|
|
|
|
|
v = (feathering - d) / feathering
|
|
|
|
|
|
if mask is None:
|
|
|
t[:, i, j] = v * v
|
|
|
else:
|
|
|
t[:, top + i, left + j] = v * v
|
|
|
|
|
|
if mask is None:
|
|
|
new_mask[:, top:top + H, left:left + W] = t
|
|
|
return (new_image, new_mask,)
|
|
|
else:
|
|
|
return (new_image, mask,)
|
|
|
|
|
|
class ImagePadForOutpaintTargetSize:
|
|
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"image": ("IMAGE",),
|
|
|
"target_width": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
|
"target_height": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
|
"feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
|
"upscale_method": (s.upscale_methods,),
|
|
|
},
|
|
|
"optional": {
|
|
|
"mask": ("MASK",),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK")
|
|
|
FUNCTION = "expand_image"
|
|
|
|
|
|
CATEGORY = "image"
|
|
|
|
|
|
def expand_image(self, image, target_width, target_height, feathering, upscale_method, mask=None):
|
|
|
B, H, W, C = image.size()
|
|
|
new_height = H
|
|
|
new_width = W
|
|
|
|
|
|
scaling_factor = min(target_width / W, target_height / H)
|
|
|
|
|
|
|
|
|
if scaling_factor < 1:
|
|
|
image = image.movedim(-1,1)
|
|
|
|
|
|
new_width = int(W * scaling_factor)
|
|
|
new_height = int(H * scaling_factor)
|
|
|
|
|
|
|
|
|
image_scaled = common_upscale(image, new_width, new_height, upscale_method, "disabled").movedim(1,-1)
|
|
|
if mask is not None:
|
|
|
mask_scaled = mask.unsqueeze(0)
|
|
|
mask_scaled = F.interpolate(mask_scaled, size=(new_height, new_width), mode="nearest")
|
|
|
mask_scaled = mask_scaled.squeeze(0)
|
|
|
else:
|
|
|
mask_scaled = mask
|
|
|
else:
|
|
|
|
|
|
image_scaled = image
|
|
|
mask_scaled = mask
|
|
|
|
|
|
|
|
|
pad_top = max(0, (target_height - new_height) // 2)
|
|
|
pad_bottom = max(0, target_height - new_height - pad_top)
|
|
|
pad_left = max(0, (target_width - new_width) // 2)
|
|
|
pad_right = max(0, target_width - new_width - pad_left)
|
|
|
|
|
|
|
|
|
return ImagePadForOutpaintMasked.expand_image(self, image_scaled, pad_left, pad_top, pad_right, pad_bottom, feathering, mask_scaled)
|
|
|
|
|
|
class ImageAndMaskPreview(SaveImage):
|
|
|
def __init__(self):
|
|
|
self.output_dir = folder_paths.get_temp_directory()
|
|
|
self.type = "temp"
|
|
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
|
|
self.compress_level = 4
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"mask_opacity": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
|
"mask_color": ("STRING", {"default": "255, 255, 255"}),
|
|
|
"pass_through": ("BOOLEAN", {"default": False}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"image": ("IMAGE",),
|
|
|
"mask": ("MASK",),
|
|
|
},
|
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
|
}
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("composite",)
|
|
|
FUNCTION = "execute"
|
|
|
CATEGORY = "KJNodes"
|
|
|
DESCRIPTION = """
|
|
|
Preview an image or a mask, when both inputs are used
|
|
|
composites the mask on top of the image.
|
|
|
with pass_through on the preview is disabled and the
|
|
|
composite is returned from the composite slot instead,
|
|
|
this allows for the preview to be passed for video combine
|
|
|
nodes for example.
|
|
|
"""
|
|
|
|
|
|
def execute(self, mask_opacity, mask_color, pass_through, filename_prefix="ComfyUI", image=None, mask=None, prompt=None, extra_pnginfo=None):
|
|
|
if mask is not None and image is None:
|
|
|
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
|
|
elif mask is None and image is not None:
|
|
|
preview = image
|
|
|
elif mask is not None and image is not None:
|
|
|
mask_adjusted = mask * mask_opacity
|
|
|
mask_image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3).clone()
|
|
|
|
|
|
if ',' in mask_color:
|
|
|
color_list = np.clip([int(channel) for channel in mask_color.split(',')], 0, 255)
|
|
|
else:
|
|
|
mask_color = mask_color.lstrip('#')
|
|
|
color_list = [int(mask_color[i:i+2], 16) for i in (0, 2, 4)]
|
|
|
mask_image[:, :, :, 0] = color_list[0] / 255
|
|
|
mask_image[:, :, :, 1] = color_list[1] / 255
|
|
|
mask_image[:, :, :, 2] = color_list[2] / 255
|
|
|
|
|
|
preview, = ImageCompositeMasked.composite(self, image, mask_image, 0, 0, True, mask_adjusted)
|
|
|
if pass_through:
|
|
|
return (preview, )
|
|
|
return(self.save_images(preview, filename_prefix, prompt, extra_pnginfo))
|
|
|
|
|
|
class CrossFadeImages:
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "crossfadeimages"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"images_1": ("IMAGE",),
|
|
|
"images_2": ("IMAGE",),
|
|
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
|
|
|
"transition_start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
|
|
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
|
|
"start_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
|
|
|
"end_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def crossfadeimages(self, images_1, images_2, transition_start_index, transitioning_frames, interpolation, start_level, end_level):
|
|
|
|
|
|
def crossfade(images_1, images_2, alpha):
|
|
|
crossfade = (1 - alpha) * images_1 + alpha * images_2
|
|
|
return crossfade
|
|
|
def ease_in(t):
|
|
|
return t * t
|
|
|
def ease_out(t):
|
|
|
return 1 - (1 - t) * (1 - t)
|
|
|
def ease_in_out(t):
|
|
|
return 3 * t * t - 2 * t * t * t
|
|
|
def bounce(t):
|
|
|
if t < 0.5:
|
|
|
return self.ease_out(t * 2) * 0.5
|
|
|
else:
|
|
|
return self.ease_in((t - 0.5) * 2) * 0.5 + 0.5
|
|
|
def elastic(t):
|
|
|
return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1))
|
|
|
def glitchy(t):
|
|
|
return t + 0.1 * math.sin(40 * t)
|
|
|
def exponential_ease_out(t):
|
|
|
return 1 - (1 - t) ** 4
|
|
|
|
|
|
easing_functions = {
|
|
|
"linear": lambda t: t,
|
|
|
"ease_in": ease_in,
|
|
|
"ease_out": ease_out,
|
|
|
"ease_in_out": ease_in_out,
|
|
|
"bounce": bounce,
|
|
|
"elastic": elastic,
|
|
|
"glitchy": glitchy,
|
|
|
"exponential_ease_out": exponential_ease_out,
|
|
|
}
|
|
|
|
|
|
crossfade_images = []
|
|
|
|
|
|
alphas = torch.linspace(start_level, end_level, transitioning_frames)
|
|
|
for i in range(transitioning_frames):
|
|
|
alpha = alphas[i]
|
|
|
image1 = images_1[i + transition_start_index]
|
|
|
image2 = images_2[i + transition_start_index]
|
|
|
easing_function = easing_functions.get(interpolation)
|
|
|
alpha = easing_function(alpha)
|
|
|
|
|
|
crossfade_image = crossfade(image1, image2, alpha)
|
|
|
crossfade_images.append(crossfade_image)
|
|
|
|
|
|
|
|
|
crossfade_images = torch.stack(crossfade_images, dim=0)
|
|
|
|
|
|
last_frame = crossfade_images[-1]
|
|
|
|
|
|
remaining_frames = len(images_2) - (transition_start_index + transitioning_frames)
|
|
|
|
|
|
for i in range(remaining_frames):
|
|
|
alpha = alphas[-1]
|
|
|
image1 = images_1[i + transition_start_index + transitioning_frames]
|
|
|
image2 = images_2[i + transition_start_index + transitioning_frames]
|
|
|
easing_function = easing_functions.get(interpolation)
|
|
|
alpha = easing_function(alpha)
|
|
|
|
|
|
crossfade_image = crossfade(image1, image2, alpha)
|
|
|
crossfade_images = torch.cat([crossfade_images, crossfade_image.unsqueeze(0)], dim=0)
|
|
|
|
|
|
beginning_images_1 = images_1[:transition_start_index]
|
|
|
crossfade_images = torch.cat([beginning_images_1, crossfade_images], dim=0)
|
|
|
return (crossfade_images, )
|
|
|
|
|
|
class CrossFadeImagesMulti:
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "crossfadeimages"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
|
|
|
"image_1": ("IMAGE",),
|
|
|
"image_2": ("IMAGE",),
|
|
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
|
|
|
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def crossfadeimages(self, inputcount, transitioning_frames, interpolation, **kwargs):
|
|
|
|
|
|
def crossfade(images_1, images_2, alpha):
|
|
|
crossfade = (1 - alpha) * images_1 + alpha * images_2
|
|
|
return crossfade
|
|
|
def ease_in(t):
|
|
|
return t * t
|
|
|
def ease_out(t):
|
|
|
return 1 - (1 - t) * (1 - t)
|
|
|
def ease_in_out(t):
|
|
|
return 3 * t * t - 2 * t * t * t
|
|
|
def bounce(t):
|
|
|
if t < 0.5:
|
|
|
return self.ease_out(t * 2) * 0.5
|
|
|
else:
|
|
|
return self.ease_in((t - 0.5) * 2) * 0.5 + 0.5
|
|
|
def elastic(t):
|
|
|
return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1))
|
|
|
def glitchy(t):
|
|
|
return t + 0.1 * math.sin(40 * t)
|
|
|
def exponential_ease_out(t):
|
|
|
return 1 - (1 - t) ** 4
|
|
|
|
|
|
easing_functions = {
|
|
|
"linear": lambda t: t,
|
|
|
"ease_in": ease_in,
|
|
|
"ease_out": ease_out,
|
|
|
"ease_in_out": ease_in_out,
|
|
|
"bounce": bounce,
|
|
|
"elastic": elastic,
|
|
|
"glitchy": glitchy,
|
|
|
"exponential_ease_out": exponential_ease_out,
|
|
|
}
|
|
|
|
|
|
image_1 = kwargs["image_1"]
|
|
|
height = image_1.shape[1]
|
|
|
width = image_1.shape[2]
|
|
|
|
|
|
easing_function = easing_functions[interpolation]
|
|
|
|
|
|
for c in range(1, inputcount):
|
|
|
frames = []
|
|
|
new_image = kwargs[f"image_{c + 1}"]
|
|
|
new_image_height = new_image.shape[1]
|
|
|
new_image_width = new_image.shape[2]
|
|
|
|
|
|
if new_image_height != height or new_image_width != width:
|
|
|
new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled")
|
|
|
new_image = new_image.movedim(1, -1)
|
|
|
|
|
|
last_frame_image_1 = image_1[-1]
|
|
|
first_frame_image_2 = new_image[0]
|
|
|
|
|
|
for frame in range(transitioning_frames):
|
|
|
t = frame / (transitioning_frames - 1)
|
|
|
alpha = easing_function(t)
|
|
|
alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device)
|
|
|
frame_image = crossfade(last_frame_image_1, first_frame_image_2, alpha_tensor)
|
|
|
frames.append(frame_image)
|
|
|
|
|
|
frames = torch.stack(frames)
|
|
|
image_1 = torch.cat((image_1, frames, new_image), dim=0)
|
|
|
|
|
|
return image_1,
|
|
|
|
|
|
def transition_images(images_1, images_2, alpha, transition_type, blur_radius, reverse):
|
|
|
width = images_1.shape[1]
|
|
|
height = images_1.shape[0]
|
|
|
|
|
|
mask = torch.zeros_like(images_1, device=images_1.device)
|
|
|
|
|
|
alpha = alpha.item()
|
|
|
if reverse:
|
|
|
alpha = 1 - alpha
|
|
|
|
|
|
|
|
|
if "horizontal slide" in transition_type:
|
|
|
pos = round(width * alpha)
|
|
|
mask[:, :pos, :] = 1.0
|
|
|
elif "vertical slide" in transition_type:
|
|
|
pos = round(height * alpha)
|
|
|
mask[:pos, :, :] = 1.0
|
|
|
elif "box" in transition_type:
|
|
|
box_w = round(width * alpha)
|
|
|
box_h = round(height * alpha)
|
|
|
x1 = (width - box_w) // 2
|
|
|
y1 = (height - box_h) // 2
|
|
|
x2 = x1 + box_w
|
|
|
y2 = y1 + box_h
|
|
|
mask[y1:y2, x1:x2, :] = 1.0
|
|
|
elif "circle" in transition_type:
|
|
|
radius = math.ceil(math.sqrt(pow(width, 2) + pow(height, 2)) * alpha / 2)
|
|
|
c_x = width // 2
|
|
|
c_y = height // 2
|
|
|
x = torch.arange(0, width, dtype=torch.float32, device="cpu")
|
|
|
y = torch.arange(0, height, dtype=torch.float32, device="cpu")
|
|
|
y, x = torch.meshgrid((y, x), indexing="ij")
|
|
|
circle = ((x - c_x) ** 2 + (y - c_y) ** 2) <= (radius ** 2)
|
|
|
mask[circle] = 1.0
|
|
|
elif "horizontal door" in transition_type:
|
|
|
bar = math.ceil(height * alpha / 2)
|
|
|
if bar > 0:
|
|
|
mask[:bar, :, :] = 1.0
|
|
|
mask[-bar:,:, :] = 1.0
|
|
|
elif "vertical door" in transition_type:
|
|
|
bar = math.ceil(width * alpha / 2)
|
|
|
if bar > 0:
|
|
|
mask[:, :bar,:] = 1.0
|
|
|
mask[:, -bar:,:] = 1.0
|
|
|
elif "fade" in transition_type:
|
|
|
mask[:, :, :] = alpha
|
|
|
|
|
|
mask = gaussian_blur(mask, blur_radius)
|
|
|
|
|
|
return images_1 * (1 - mask) + images_2 * mask
|
|
|
|
|
|
def ease_in(t):
|
|
|
return t * t
|
|
|
def ease_out(t):
|
|
|
return 1 - (1 - t) * (1 - t)
|
|
|
def ease_in_out(t):
|
|
|
return 3 * t * t - 2 * t * t * t
|
|
|
def bounce(t):
|
|
|
if t < 0.5:
|
|
|
return ease_out(t * 2) * 0.5
|
|
|
else:
|
|
|
return ease_in((t - 0.5) * 2) * 0.5 + 0.5
|
|
|
def elastic(t):
|
|
|
return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1))
|
|
|
def glitchy(t):
|
|
|
return t + 0.1 * math.sin(40 * t)
|
|
|
def exponential_ease_out(t):
|
|
|
return 1 - (1 - t) ** 4
|
|
|
|
|
|
def gaussian_blur(mask, blur_radius):
|
|
|
if blur_radius > 0:
|
|
|
kernel_size = int(blur_radius * 2) + 1
|
|
|
if kernel_size % 2 == 0:
|
|
|
kernel_size += 1
|
|
|
sigma = blur_radius / 3
|
|
|
x = torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=torch.float32)
|
|
|
x = torch.exp(-0.5 * (x / sigma) ** 2)
|
|
|
kernel1d = x / x.sum()
|
|
|
kernel2d = kernel1d[:, None] * kernel1d[None, :]
|
|
|
kernel2d = kernel2d.to(mask.device)
|
|
|
kernel2d = kernel2d.expand(mask.shape[2], 1, kernel2d.shape[0], kernel2d.shape[1])
|
|
|
mask = mask.permute(2, 0, 1).unsqueeze(0)
|
|
|
mask = F.conv2d(mask, kernel2d, padding=kernel_size // 2, groups=mask.shape[1])
|
|
|
mask = mask.squeeze(0).permute(1, 2, 0)
|
|
|
return mask
|
|
|
|
|
|
easing_functions = {
|
|
|
"linear": lambda t: t,
|
|
|
"ease_in": ease_in,
|
|
|
"ease_out": ease_out,
|
|
|
"ease_in_out": ease_in_out,
|
|
|
"bounce": bounce,
|
|
|
"elastic": elastic,
|
|
|
"glitchy": glitchy,
|
|
|
"exponential_ease_out": exponential_ease_out,
|
|
|
}
|
|
|
|
|
|
class TransitionImagesMulti:
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "transition"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Creates transitions between images.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
|
|
|
"image_1": ("IMAGE",),
|
|
|
"image_2": ("IMAGE",),
|
|
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
|
|
|
"transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],),
|
|
|
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
|
|
"blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}),
|
|
|
"reverse": ("BOOLEAN", {"default": False}),
|
|
|
"device": (["CPU", "GPU"], {"default": "CPU"}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def transition(self, inputcount, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse, **kwargs):
|
|
|
|
|
|
gpu = model_management.get_torch_device()
|
|
|
|
|
|
image_1 = kwargs["image_1"]
|
|
|
height = image_1.shape[1]
|
|
|
width = image_1.shape[2]
|
|
|
|
|
|
easing_function = easing_functions[interpolation]
|
|
|
|
|
|
for c in range(1, inputcount):
|
|
|
frames = []
|
|
|
new_image = kwargs[f"image_{c + 1}"]
|
|
|
new_image_height = new_image.shape[1]
|
|
|
new_image_width = new_image.shape[2]
|
|
|
|
|
|
if new_image_height != height or new_image_width != width:
|
|
|
new_image = common_upscale(new_image.movedim(-1, 1), width, height, "lanczos", "disabled")
|
|
|
new_image = new_image.movedim(1, -1)
|
|
|
|
|
|
last_frame_image_1 = image_1[-1]
|
|
|
first_frame_image_2 = new_image[0]
|
|
|
if device == "GPU":
|
|
|
last_frame_image_1 = last_frame_image_1.to(gpu)
|
|
|
first_frame_image_2 = first_frame_image_2.to(gpu)
|
|
|
|
|
|
if reverse:
|
|
|
last_frame_image_1, first_frame_image_2 = first_frame_image_2, last_frame_image_1
|
|
|
|
|
|
for frame in range(transitioning_frames):
|
|
|
t = frame / (transitioning_frames - 1)
|
|
|
alpha = easing_function(t)
|
|
|
alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device)
|
|
|
frame_image = transition_images(last_frame_image_1, first_frame_image_2, alpha_tensor, transition_type, blur_radius, reverse)
|
|
|
frames.append(frame_image)
|
|
|
|
|
|
frames = torch.stack(frames).cpu()
|
|
|
image_1 = torch.cat((image_1, frames, new_image), dim=0)
|
|
|
|
|
|
return image_1.cpu(),
|
|
|
|
|
|
class TransitionImagesInBatch:
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "transition"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Creates transitions between images in a batch.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"images": ("IMAGE",),
|
|
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
|
|
|
"transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal door", "vertical door", "fade"],),
|
|
|
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
|
|
"blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}),
|
|
|
"reverse": ("BOOLEAN", {"default": False}),
|
|
|
"device": (["CPU", "GPU"], {"default": "CPU"}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
|
|
|
def transition(self, images, transitioning_frames, transition_type, interpolation, device, blur_radius, reverse):
|
|
|
if images.shape[0] == 1:
|
|
|
return images,
|
|
|
|
|
|
gpu = model_management.get_torch_device()
|
|
|
|
|
|
easing_function = easing_functions[interpolation]
|
|
|
|
|
|
images_list = []
|
|
|
for i in range(images.shape[0] - 1):
|
|
|
frames = []
|
|
|
image_1 = images[i]
|
|
|
image_2 = images[i + 1]
|
|
|
|
|
|
if device == "GPU":
|
|
|
image_1 = image_1.to(gpu)
|
|
|
image_2 = image_2.to(gpu)
|
|
|
|
|
|
if reverse:
|
|
|
image_1, image_2 = image_2, image_1
|
|
|
|
|
|
for frame in range(transitioning_frames):
|
|
|
t = frame / (transitioning_frames - 1)
|
|
|
alpha = easing_function(t)
|
|
|
alpha_tensor = torch.tensor(alpha, dtype=image_1.dtype, device=image_1.device)
|
|
|
frame_image = transition_images(image_1, image_2, alpha_tensor, transition_type, blur_radius, reverse)
|
|
|
frames.append(frame_image)
|
|
|
|
|
|
frames = torch.stack(frames).cpu()
|
|
|
images_list.append(frames)
|
|
|
images = torch.cat(images_list, dim=0)
|
|
|
|
|
|
return images.cpu(),
|
|
|
|
|
|
class ShuffleImageBatch:
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "shuffle"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"images": ("IMAGE",),
|
|
|
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def shuffle(self, images, seed):
|
|
|
torch.manual_seed(seed)
|
|
|
B, H, W, C = images.shape
|
|
|
indices = torch.randperm(B)
|
|
|
shuffled_images = images[indices]
|
|
|
|
|
|
return shuffled_images,
|
|
|
|
|
|
class GetImageRangeFromBatch:
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", )
|
|
|
FUNCTION = "imagesfrombatch"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Randomizes image order within a batch.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"start_index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}),
|
|
|
"num_frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"images": ("IMAGE",),
|
|
|
"masks": ("MASK",),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
def imagesfrombatch(self, start_index, num_frames, images=None, masks=None):
|
|
|
|
|
|
chosen_images = None
|
|
|
chosen_masks = None
|
|
|
|
|
|
|
|
|
if images is not None:
|
|
|
if start_index == -1:
|
|
|
start_index = len(images) - num_frames
|
|
|
if start_index < 0 or start_index >= len(images):
|
|
|
raise ValueError("Start index is out of range")
|
|
|
end_index = start_index + num_frames
|
|
|
if end_index > len(images):
|
|
|
raise ValueError("End index is out of range")
|
|
|
chosen_images = images[start_index:end_index]
|
|
|
|
|
|
|
|
|
if masks is not None:
|
|
|
if start_index == -1:
|
|
|
start_index = len(masks) - num_frames
|
|
|
if start_index < 0 or start_index >= len(masks):
|
|
|
raise ValueError("Start index is out of range for masks")
|
|
|
end_index = start_index + num_frames
|
|
|
if end_index > len(masks):
|
|
|
raise ValueError("End index is out of range for masks")
|
|
|
chosen_masks = masks[start_index:end_index]
|
|
|
|
|
|
return (chosen_images, chosen_masks,)
|
|
|
|
|
|
class GetImagesFromBatchIndexed:
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "indexedimagesfrombatch"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Selects and returns the images at the specified indices as an image batch.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"images": ("IMAGE",),
|
|
|
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def indexedimagesfrombatch(self, images, indexes):
|
|
|
|
|
|
|
|
|
index_list = [int(index.strip()) for index in indexes.split(',')]
|
|
|
|
|
|
|
|
|
indices_tensor = torch.tensor(index_list, dtype=torch.long)
|
|
|
|
|
|
|
|
|
chosen_images = images[indices_tensor]
|
|
|
|
|
|
return (chosen_images,)
|
|
|
|
|
|
class InsertImagesToBatchIndexed:
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "insertimagesfrombatch"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Inserts images at the specified indices into the original image batch.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"original_images": ("IMAGE",),
|
|
|
"images_to_insert": ("IMAGE",),
|
|
|
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def insertimagesfrombatch(self, original_images, images_to_insert, indexes):
|
|
|
|
|
|
|
|
|
index_list = [int(index.strip()) for index in indexes.split(',')]
|
|
|
|
|
|
|
|
|
indices_tensor = torch.tensor(index_list, dtype=torch.long)
|
|
|
|
|
|
|
|
|
if not isinstance(images_to_insert, torch.Tensor):
|
|
|
images_to_insert = torch.tensor(images_to_insert)
|
|
|
|
|
|
|
|
|
for index, image in zip(indices_tensor, images_to_insert):
|
|
|
original_images[index] = image
|
|
|
|
|
|
return (original_images,)
|
|
|
|
|
|
class ReplaceImagesInBatch:
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "replace"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Replaces the images in a batch, starting from the specified start index,
|
|
|
with the replacement images.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"original_images": ("IMAGE",),
|
|
|
"replacement_images": ("IMAGE",),
|
|
|
"start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def replace(self, original_images, replacement_images, start_index):
|
|
|
images = None
|
|
|
if start_index >= len(original_images):
|
|
|
raise ValueError("GetImageRangeFromBatch: Start index is out of range")
|
|
|
end_index = start_index + len(replacement_images)
|
|
|
if end_index > len(original_images):
|
|
|
raise ValueError("GetImageRangeFromBatch: End index is out of range")
|
|
|
|
|
|
original_images_copy = original_images.clone()
|
|
|
original_images_copy[start_index:end_index] = replacement_images
|
|
|
images = original_images_copy
|
|
|
return (images, )
|
|
|
|
|
|
|
|
|
class ReverseImageBatch:
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "reverseimagebatch"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Reverses the order of the images in a batch.
|
|
|
"""
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"images": ("IMAGE",),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
def reverseimagebatch(self, images):
|
|
|
reversed_images = torch.flip(images, [0])
|
|
|
return (reversed_images, )
|
|
|
|
|
|
class ImageBatchMulti:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
|
|
|
"image_1": ("IMAGE", ),
|
|
|
"image_2": ("IMAGE", ),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("images",)
|
|
|
FUNCTION = "combine"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Creates an image batch from multiple images.
|
|
|
You can set how many inputs the node has,
|
|
|
with the **inputcount** and clicking update.
|
|
|
"""
|
|
|
|
|
|
def combine(self, inputcount, **kwargs):
|
|
|
from nodes import ImageBatch
|
|
|
image_batch_node = ImageBatch()
|
|
|
image = kwargs["image_1"]
|
|
|
for c in range(1, inputcount):
|
|
|
new_image = kwargs[f"image_{c + 1}"]
|
|
|
image, = image_batch_node.batch(image, new_image)
|
|
|
return (image,)
|
|
|
|
|
|
class ImageAddMulti:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
|
|
|
"image_1": ("IMAGE", ),
|
|
|
"image_2": ("IMAGE", ),
|
|
|
"blending": (
|
|
|
[ 'add',
|
|
|
'subtract',
|
|
|
'multiply',
|
|
|
'difference',
|
|
|
],
|
|
|
{
|
|
|
"default": 'add'
|
|
|
}),
|
|
|
"blend_amount": ("FLOAT", {"default": 0.5, "min": 0, "max": 1, "step": 0.01}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("images",)
|
|
|
FUNCTION = "add"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Add blends multiple images together.
|
|
|
You can set how many inputs the node has,
|
|
|
with the **inputcount** and clicking update.
|
|
|
"""
|
|
|
|
|
|
def add(self, inputcount, blending, blend_amount, **kwargs):
|
|
|
image = kwargs["image_1"]
|
|
|
for c in range(1, inputcount):
|
|
|
new_image = kwargs[f"image_{c + 1}"]
|
|
|
if blending == "add":
|
|
|
image = torch.add(image * blend_amount, new_image * blend_amount)
|
|
|
elif blending == "subtract":
|
|
|
image = torch.sub(image * blend_amount, new_image * blend_amount)
|
|
|
elif blending == "multiply":
|
|
|
image = torch.mul(image * blend_amount, new_image * blend_amount)
|
|
|
elif blending == "difference":
|
|
|
image = torch.sub(image, new_image)
|
|
|
return (image,)
|
|
|
|
|
|
class ImageConcatMulti:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
|
|
|
"image_1": ("IMAGE", ),
|
|
|
"image_2": ("IMAGE", ),
|
|
|
"direction": (
|
|
|
[ 'right',
|
|
|
'down',
|
|
|
'left',
|
|
|
'up',
|
|
|
],
|
|
|
{
|
|
|
"default": 'right'
|
|
|
}),
|
|
|
"match_image_size": ("BOOLEAN", {"default": False}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("images",)
|
|
|
FUNCTION = "combine"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Creates an image from multiple images.
|
|
|
You can set how many inputs the node has,
|
|
|
with the **inputcount** and clicking update.
|
|
|
"""
|
|
|
|
|
|
def combine(self, inputcount, direction, match_image_size, **kwargs):
|
|
|
image = kwargs["image_1"]
|
|
|
first_image_shape = None
|
|
|
if first_image_shape is None:
|
|
|
first_image_shape = image.shape
|
|
|
for c in range(1, inputcount):
|
|
|
new_image = kwargs[f"image_{c + 1}"]
|
|
|
image, = ImageConcanate.concanate(self, image, new_image, direction, match_image_size, first_image_shape=first_image_shape)
|
|
|
first_image_shape = None
|
|
|
return (image,)
|
|
|
|
|
|
class PreviewAnimation:
|
|
|
def __init__(self):
|
|
|
self.output_dir = folder_paths.get_temp_directory()
|
|
|
self.type = "temp"
|
|
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
|
|
self.compress_level = 1
|
|
|
|
|
|
methods = {"default": 4, "fastest": 0, "slowest": 6}
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required":
|
|
|
{
|
|
|
"fps": ("FLOAT", {"default": 8.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"images": ("IMAGE", ),
|
|
|
"masks": ("MASK", ),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ()
|
|
|
FUNCTION = "preview"
|
|
|
OUTPUT_NODE = True
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
|
|
|
def preview(self, fps, images=None, masks=None):
|
|
|
filename_prefix = "AnimPreview"
|
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
|
|
results = list()
|
|
|
|
|
|
pil_images = []
|
|
|
|
|
|
if images is not None and masks is not None:
|
|
|
for image in images:
|
|
|
i = 255. * image.cpu().numpy()
|
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
|
pil_images.append(img)
|
|
|
for mask in masks:
|
|
|
if pil_images:
|
|
|
mask_np = mask.cpu().numpy()
|
|
|
mask_np = np.clip(mask_np * 255, 0, 255).astype(np.uint8)
|
|
|
mask_img = Image.fromarray(mask_np, mode='L')
|
|
|
img = pil_images.pop(0)
|
|
|
img = img.convert("RGBA")
|
|
|
|
|
|
|
|
|
rgba_mask_img = Image.new("RGBA", img.size, (255, 255, 255, 255))
|
|
|
rgba_mask_img.putalpha(mask_img)
|
|
|
|
|
|
|
|
|
composited_img = Image.alpha_composite(img, rgba_mask_img)
|
|
|
pil_images.append(composited_img)
|
|
|
|
|
|
elif images is not None and masks is None:
|
|
|
for image in images:
|
|
|
i = 255. * image.cpu().numpy()
|
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
|
pil_images.append(img)
|
|
|
|
|
|
elif masks is not None and images is None:
|
|
|
for mask in masks:
|
|
|
mask_np = 255. * mask.cpu().numpy()
|
|
|
mask_img = Image.fromarray(np.clip(mask_np, 0, 255).astype(np.uint8))
|
|
|
pil_images.append(mask_img)
|
|
|
else:
|
|
|
print("PreviewAnimation: No images or masks provided")
|
|
|
return { "ui": { "images": results, "animated": (None,), "text": "empty" }}
|
|
|
|
|
|
num_frames = len(pil_images)
|
|
|
|
|
|
c = len(pil_images)
|
|
|
for i in range(0, c, num_frames):
|
|
|
file = f"{filename}_{counter:05}_.webp"
|
|
|
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], lossless=False, quality=80, method=4)
|
|
|
results.append({
|
|
|
"filename": file,
|
|
|
"subfolder": subfolder,
|
|
|
"type": self.type
|
|
|
})
|
|
|
counter += 1
|
|
|
|
|
|
animated = num_frames != 1
|
|
|
return { "ui": { "images": results, "animated": (animated,), "text": [f"{num_frames}x{pil_images[0].size[0]}x{pil_images[0].size[1]}"] } }
|
|
|
|
|
|
class ImageResizeKJ:
|
|
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"image": ("IMAGE",),
|
|
|
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
|
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
|
"upscale_method": (s.upscale_methods,),
|
|
|
"keep_proportion": ("BOOLEAN", { "default": False }),
|
|
|
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
|
|
|
},
|
|
|
"optional" : {
|
|
|
"width_input": ("INT", { "forceInput": True}),
|
|
|
"height_input": ("INT", { "forceInput": True}),
|
|
|
"get_image_size": ("IMAGE",),
|
|
|
"crop": (["disabled","center"],),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE", "INT", "INT",)
|
|
|
RETURN_NAMES = ("IMAGE", "width", "height",)
|
|
|
FUNCTION = "resize"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = """
|
|
|
Resizes the image to the specified width and height.
|
|
|
Size can be retrieved from the inputs, and the final scale
|
|
|
is determined in this order of importance:
|
|
|
- get_image_size
|
|
|
- width_input and height_input
|
|
|
- width and height widgets
|
|
|
|
|
|
Keep proportions keeps the aspect ratio of the image, by
|
|
|
highest dimension.
|
|
|
"""
|
|
|
|
|
|
def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by,
|
|
|
width_input=None, height_input=None, get_image_size=None, crop="disabled"):
|
|
|
B, H, W, C = image.shape
|
|
|
|
|
|
if width_input:
|
|
|
width = width_input
|
|
|
if height_input:
|
|
|
height = height_input
|
|
|
if get_image_size is not None:
|
|
|
_, height, width, _ = get_image_size.shape
|
|
|
|
|
|
if keep_proportion and get_image_size is None:
|
|
|
|
|
|
if width == 0 and height != 0:
|
|
|
ratio = height / H
|
|
|
width = round(W * ratio)
|
|
|
elif height == 0 and width != 0:
|
|
|
ratio = width / W
|
|
|
height = round(H * ratio)
|
|
|
elif width != 0 and height != 0:
|
|
|
|
|
|
ratio = min(width / W, height / H)
|
|
|
width = round(W * ratio)
|
|
|
height = round(H * ratio)
|
|
|
else:
|
|
|
if width == 0:
|
|
|
width = W
|
|
|
if height == 0:
|
|
|
height = H
|
|
|
|
|
|
if divisible_by > 1 and get_image_size is None:
|
|
|
width = width - (width % divisible_by)
|
|
|
height = height - (height % divisible_by)
|
|
|
|
|
|
image = image.movedim(-1,1)
|
|
|
image = common_upscale(image, width, height, upscale_method, crop)
|
|
|
image = image.movedim(1,-1)
|
|
|
|
|
|
return(image, image.shape[2], image.shape[1],)
|
|
|
import pathlib
|
|
|
class LoadAndResizeImage:
|
|
|
_color_channels = ["alpha", "red", "green", "blue"]
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
input_dir = folder_paths.get_input_directory()
|
|
|
files = [f.name for f in pathlib.Path(input_dir).iterdir() if f.is_file()]
|
|
|
return {"required":
|
|
|
{
|
|
|
"image": (sorted(files), {"image_upload": True}),
|
|
|
"resize": ("BOOLEAN", { "default": False }),
|
|
|
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
|
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
|
"repeat": ("INT", { "default": 1, "min": 1, "max": 4096, "step": 1, }),
|
|
|
"keep_proportion": ("BOOLEAN", { "default": False }),
|
|
|
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
|
|
|
"mask_channel": (s._color_channels, {"tooltip": "Channel to use for the mask output"}),
|
|
|
"background_color": ("STRING", { "default": "", "tooltip": "Fills the alpha channel with the specified color."}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT", "STRING",)
|
|
|
RETURN_NAMES = ("image", "mask", "width", "height","image_path",)
|
|
|
FUNCTION = "load_image"
|
|
|
|
|
|
def load_image(self, image, resize, width, height, repeat, keep_proportion, divisible_by, mask_channel, background_color):
|
|
|
from PIL import ImageColor, Image, ImageOps, ImageSequence
|
|
|
import numpy as np
|
|
|
import torch
|
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
|
|
|
|
import node_helpers
|
|
|
img = node_helpers.pillow(Image.open, image_path)
|
|
|
|
|
|
|
|
|
if background_color:
|
|
|
try:
|
|
|
|
|
|
bg_color_rgba = tuple(int(x.strip()) for x in background_color.split(','))
|
|
|
except ValueError:
|
|
|
|
|
|
if background_color.startswith('#') or background_color.lower() in ImageColor.colormap:
|
|
|
bg_color_rgba = ImageColor.getrgb(background_color)
|
|
|
else:
|
|
|
raise ValueError(f"Invalid background color: {background_color}")
|
|
|
|
|
|
bg_color_rgba += (255,)
|
|
|
else:
|
|
|
bg_color_rgba = None
|
|
|
|
|
|
output_images = []
|
|
|
output_masks = []
|
|
|
w, h = None, None
|
|
|
|
|
|
excluded_formats = ['MPO']
|
|
|
|
|
|
W, H = img.size
|
|
|
if resize:
|
|
|
if keep_proportion:
|
|
|
ratio = min(width / W, height / H)
|
|
|
width = round(W * ratio)
|
|
|
height = round(H * ratio)
|
|
|
else:
|
|
|
if width == 0:
|
|
|
width = W
|
|
|
if height == 0:
|
|
|
height = H
|
|
|
|
|
|
if divisible_by > 1:
|
|
|
width = width - (width % divisible_by)
|
|
|
height = height - (height % divisible_by)
|
|
|
else:
|
|
|
width, height = W, H
|
|
|
|
|
|
for frame in ImageSequence.Iterator(img):
|
|
|
frame = node_helpers.pillow(ImageOps.exif_transpose, frame)
|
|
|
|
|
|
if frame.mode == 'I':
|
|
|
frame = frame.point(lambda i: i * (1 / 255))
|
|
|
|
|
|
if frame.mode == 'P':
|
|
|
frame = frame.convert("RGBA")
|
|
|
elif 'A' in frame.getbands():
|
|
|
frame = frame.convert("RGBA")
|
|
|
|
|
|
|
|
|
if 'A' in frame.getbands() and bg_color_rgba:
|
|
|
alpha_mask = np.array(frame.getchannel('A')).astype(np.float32) / 255.0
|
|
|
alpha_mask = 1. - torch.from_numpy(alpha_mask)
|
|
|
bg_image = Image.new("RGBA", frame.size, bg_color_rgba)
|
|
|
|
|
|
frame = Image.alpha_composite(bg_image, frame)
|
|
|
else:
|
|
|
alpha_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
|
|
|
|
|
image = frame.convert("RGB")
|
|
|
|
|
|
if len(output_images) == 0:
|
|
|
w = image.size[0]
|
|
|
h = image.size[1]
|
|
|
|
|
|
if image.size[0] != w or image.size[1] != h:
|
|
|
continue
|
|
|
if resize:
|
|
|
image = image.resize((width, height), Image.Resampling.BILINEAR)
|
|
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
image = torch.from_numpy(image)[None,]
|
|
|
|
|
|
c = mask_channel[0].upper()
|
|
|
if c in frame.getbands():
|
|
|
if resize:
|
|
|
frame = frame.resize((width, height), Image.Resampling.BILINEAR)
|
|
|
mask = np.array(frame.getchannel(c)).astype(np.float32) / 255.0
|
|
|
mask = torch.from_numpy(mask)
|
|
|
if c == 'A' and bg_color_rgba:
|
|
|
mask = alpha_mask
|
|
|
elif c == 'A':
|
|
|
mask = 1. - mask
|
|
|
else:
|
|
|
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
|
|
|
|
|
output_images.append(image)
|
|
|
output_masks.append(mask.unsqueeze(0))
|
|
|
|
|
|
if len(output_images) > 1 and img.format not in excluded_formats:
|
|
|
output_image = torch.cat(output_images, dim=0)
|
|
|
output_mask = torch.cat(output_masks, dim=0)
|
|
|
else:
|
|
|
output_image = output_images[0]
|
|
|
output_mask = output_masks[0]
|
|
|
if repeat > 1:
|
|
|
output_image = output_image.repeat(repeat, 1, 1, 1)
|
|
|
output_mask = output_mask.repeat(repeat, 1, 1)
|
|
|
|
|
|
return (output_image, output_mask, width, height, image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
def VALIDATE_INPUTS(s, image):
|
|
|
if not folder_paths.exists_annotated_filepath(image):
|
|
|
return "Invalid image file: {}".format(image)
|
|
|
|
|
|
return True
|
|
|
|
|
|
class LoadImagesFromFolderKJ:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"folder": ("STRING", {"default": ""}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}),
|
|
|
"start_index": ("INT", {"default": 0, "min": 0, "step": 1}),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT", "STRING",)
|
|
|
RETURN_NAMES = ("image", "mask", "count", "image_path",)
|
|
|
FUNCTION = "load_images"
|
|
|
|
|
|
CATEGORY = "image"
|
|
|
|
|
|
def load_images(self, folder, image_load_cap, start_index):
|
|
|
if not os.path.isdir(folder):
|
|
|
raise FileNotFoundError(f"Folder '{folder} cannot be found.'")
|
|
|
dir_files = os.listdir(folder)
|
|
|
if len(dir_files) == 0:
|
|
|
raise FileNotFoundError(f"No files in directory '{folder}'.")
|
|
|
|
|
|
|
|
|
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp']
|
|
|
dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)]
|
|
|
|
|
|
dir_files = sorted(dir_files)
|
|
|
dir_files = [os.path.join(folder, x) for x in dir_files]
|
|
|
|
|
|
|
|
|
dir_files = dir_files[start_index:]
|
|
|
|
|
|
images = []
|
|
|
masks = []
|
|
|
image_path_list = []
|
|
|
|
|
|
limit_images = False
|
|
|
if image_load_cap > 0:
|
|
|
limit_images = True
|
|
|
image_count = 0
|
|
|
|
|
|
has_non_empty_mask = False
|
|
|
|
|
|
for image_path in dir_files:
|
|
|
if os.path.isdir(image_path) and os.path.ex:
|
|
|
continue
|
|
|
if limit_images and image_count >= image_load_cap:
|
|
|
break
|
|
|
i = Image.open(image_path)
|
|
|
i = ImageOps.exif_transpose(i)
|
|
|
image = i.convert("RGB")
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
image = torch.from_numpy(image)[None,]
|
|
|
if 'A' in i.getbands():
|
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
|
|
mask = 1. - torch.from_numpy(mask)
|
|
|
has_non_empty_mask = True
|
|
|
else:
|
|
|
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
|
|
|
images.append(image)
|
|
|
masks.append(mask)
|
|
|
image_path_list.append(image_path)
|
|
|
image_count += 1
|
|
|
|
|
|
if len(images) == 1:
|
|
|
return (images[0], masks[0], 1)
|
|
|
|
|
|
elif len(images) > 1:
|
|
|
image1 = images[0]
|
|
|
mask1 = None
|
|
|
|
|
|
for image2 in images[1:]:
|
|
|
if image1.shape[1:] != image2.shape[1:]:
|
|
|
image2 = common_upscale(image2.movedim(-1, 1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1, -1)
|
|
|
image1 = torch.cat((image1, image2), dim=0)
|
|
|
|
|
|
for mask2 in masks[1:]:
|
|
|
if has_non_empty_mask:
|
|
|
if image1.shape[1:3] != mask2.shape:
|
|
|
mask2 = torch.nn.functional.interpolate(mask2.unsqueeze(0).unsqueeze(0), size=(image1.shape[2], image1.shape[1]), mode='bilinear', align_corners=False)
|
|
|
mask2 = mask2.squeeze(0)
|
|
|
else:
|
|
|
mask2 = mask2.unsqueeze(0)
|
|
|
else:
|
|
|
mask2 = mask2.unsqueeze(0)
|
|
|
|
|
|
if mask1 is None:
|
|
|
mask1 = mask2
|
|
|
else:
|
|
|
mask1 = torch.cat((mask1, mask2), dim=0)
|
|
|
|
|
|
return (image1, mask1, len(images), image_path_list)
|
|
|
|
|
|
class ImageGridtoBatch:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {
|
|
|
"image": ("IMAGE", ),
|
|
|
"columns": ("INT", {"default": 3, "min": 1, "max": 8, "tooltip": "The number of columns in the grid."}),
|
|
|
"rows": ("INT", {"default": 0, "min": 1, "max": 8, "tooltip": "The number of rows in the grid. Set to 0 for automatic calculation."}),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
FUNCTION = "decompose"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
DESCRIPTION = "Converts a grid of images to a batch of images."
|
|
|
|
|
|
def decompose(self, image, columns, rows):
|
|
|
B, H, W, C = image.shape
|
|
|
print("input size: ", image.shape)
|
|
|
|
|
|
|
|
|
cell_width = W // columns
|
|
|
|
|
|
if rows == 0:
|
|
|
|
|
|
rows = H // cell_height
|
|
|
else:
|
|
|
|
|
|
cell_height = H // rows
|
|
|
|
|
|
|
|
|
image = image[:, :rows*cell_height, :columns*cell_width, :]
|
|
|
|
|
|
|
|
|
image = image.view(B, rows, cell_height, columns, cell_width, C)
|
|
|
image = image.permute(0, 1, 3, 2, 4, 5).contiguous()
|
|
|
image = image.view(B, rows * columns, cell_height, cell_width, C)
|
|
|
|
|
|
|
|
|
img_tensor = image.view(-1, cell_height, cell_width, C)
|
|
|
|
|
|
return (img_tensor,)
|
|
|
|
|
|
class SaveImageKJ:
|
|
|
def __init__(self):
|
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
self.type = "output"
|
|
|
self.prefix_append = ""
|
|
|
self.compress_level = 4
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"images": ("IMAGE", {"tooltip": "The images to save."}),
|
|
|
"filename_prefix": ("STRING", {"default": "ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."}),
|
|
|
"output_folder": ("STRING", {"default": "output", "tooltip": "The folder to save the images to."}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"caption_file_extension": ("STRING", {"default": ".txt", "tooltip": "The extension for the caption file."}),
|
|
|
"caption": ("STRING", {"forceInput": True, "tooltip": "string to save as .txt file"}),
|
|
|
},
|
|
|
"hidden": {
|
|
|
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("STRING",)
|
|
|
RETURN_NAMES = ("filename",)
|
|
|
FUNCTION = "save_images"
|
|
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
|
|
CATEGORY = "image"
|
|
|
DESCRIPTION = "Saves the input images to your ComfyUI output directory."
|
|
|
|
|
|
def save_images(self, images, output_folder, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None, caption=None, caption_file_extension=".txt"):
|
|
|
filename_prefix += self.prefix_append
|
|
|
|
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
|
|
if output_folder != "output":
|
|
|
if not os.path.exists(output_folder):
|
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
|
full_output_folder = output_folder
|
|
|
results = list()
|
|
|
for (batch_number, image) in enumerate(images):
|
|
|
i = 255. * image.cpu().numpy()
|
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
|
metadata = None
|
|
|
if not args.disable_metadata:
|
|
|
metadata = PngInfo()
|
|
|
if prompt is not None:
|
|
|
metadata.add_text("prompt", json.dumps(prompt))
|
|
|
if extra_pnginfo is not None:
|
|
|
for x in extra_pnginfo:
|
|
|
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
|
|
|
|
|
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
|
|
base_file_name = f"{filename_with_batch_num}_{counter:05}_"
|
|
|
file = f"{base_file_name}.png"
|
|
|
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
|
|
|
results.append({
|
|
|
"filename": file,
|
|
|
"subfolder": subfolder,
|
|
|
"type": self.type
|
|
|
})
|
|
|
if caption is not None:
|
|
|
txt_file = base_file_name + caption_file_extension
|
|
|
file_path = os.path.join(full_output_folder, txt_file)
|
|
|
with open(file_path, 'w') as f:
|
|
|
f.write(caption)
|
|
|
|
|
|
counter += 1
|
|
|
|
|
|
|
|
|
|
|
|
return { "ui": {
|
|
|
"images": results },
|
|
|
"result": (file,) }
|
|
|
|
|
|
to_pil_image = T.ToPILImage()
|
|
|
|
|
|
class FastPreview:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(cls):
|
|
|
return {
|
|
|
"required": {
|
|
|
"image": ("IMAGE", ),
|
|
|
"format": (["JPEG", "PNG", "WEBP"], {"default": "JPEG"}),
|
|
|
"quality" : ("INT", {"default": 75, "min": 1, "max": 100, "step": 1}),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ()
|
|
|
FUNCTION = "preview"
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
OUTPUT_NODE = True
|
|
|
|
|
|
def preview(self, image, format, quality):
|
|
|
pil_image = to_pil_image(image[0].permute(2, 0, 1))
|
|
|
|
|
|
with io.BytesIO() as buffered:
|
|
|
pil_image.save(buffered, format=format, quality=quality)
|
|
|
img_bytes = buffered.getvalue()
|
|
|
|
|
|
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
|
|
|
|
|
|
return {
|
|
|
"ui": {"bg_image": [img_base64]},
|
|
|
"result": ()
|
|
|
}
|
|
|
|
|
|
class ImageCropByMaskAndResize:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"image": ("IMAGE", ),
|
|
|
"mask": ("MASK", ),
|
|
|
"base_resolution": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
|
"padding": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
|
|
|
"min_crop_resolution": ("INT", { "default": 128, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
|
"max_crop_resolution": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
|
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "BBOX", )
|
|
|
RETURN_NAMES = ("images", "masks", "bbox",)
|
|
|
FUNCTION = "crop"
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
|
|
|
def crop_by_mask(self, mask, padding=0, min_crop_resolution=None, max_crop_resolution=None):
|
|
|
iy, ix = (mask == 1).nonzero(as_tuple=True)
|
|
|
h0, w0 = mask.shape
|
|
|
|
|
|
if iy.numel() == 0:
|
|
|
x_c = w0 / 2.0
|
|
|
y_c = h0 / 2.0
|
|
|
width = 0
|
|
|
height = 0
|
|
|
else:
|
|
|
x_min = ix.min().item()
|
|
|
x_max = ix.max().item()
|
|
|
y_min = iy.min().item()
|
|
|
y_max = iy.max().item()
|
|
|
|
|
|
width = x_max - x_min
|
|
|
height = y_max - y_min
|
|
|
|
|
|
if width > w0 or height > h0:
|
|
|
raise Exception("Masked area out of bounds")
|
|
|
|
|
|
x_c = (x_min + x_max) / 2.0
|
|
|
y_c = (y_min + y_max) / 2.0
|
|
|
|
|
|
if min_crop_resolution:
|
|
|
width = max(width, min_crop_resolution)
|
|
|
height = max(height, min_crop_resolution)
|
|
|
|
|
|
if max_crop_resolution:
|
|
|
width = min(width, max_crop_resolution)
|
|
|
height = min(height, max_crop_resolution)
|
|
|
|
|
|
if w0 <= width:
|
|
|
x0 = 0
|
|
|
w = w0
|
|
|
else:
|
|
|
x0 = max(0, x_c - width / 2 - padding)
|
|
|
w = width + 2 * padding
|
|
|
if x0 + w > w0:
|
|
|
x0 = w0 - w
|
|
|
|
|
|
if h0 <= height:
|
|
|
y0 = 0
|
|
|
h = h0
|
|
|
else:
|
|
|
y0 = max(0, y_c - height / 2 - padding)
|
|
|
h = height + 2 * padding
|
|
|
if y0 + h > h0:
|
|
|
y0 = h0 - h
|
|
|
|
|
|
return (int(x0), int(y0), int(w), int(h))
|
|
|
|
|
|
def crop(self, image, mask, base_resolution, padding=0, min_crop_resolution=128, max_crop_resolution=512):
|
|
|
mask = mask.round()
|
|
|
image_list = []
|
|
|
mask_list = []
|
|
|
bbox_list = []
|
|
|
|
|
|
|
|
|
bbox_params = []
|
|
|
aspect_ratios = []
|
|
|
for i in range(image.shape[0]):
|
|
|
x0, y0, w, h = self.crop_by_mask(mask[i], padding, min_crop_resolution, max_crop_resolution)
|
|
|
bbox_params.append((x0, y0, w, h))
|
|
|
aspect_ratios.append(w / h)
|
|
|
|
|
|
|
|
|
max_w = max([w for x0, y0, w, h in bbox_params])
|
|
|
max_h = max([h for x0, y0, w, h in bbox_params])
|
|
|
max_aspect_ratio = max(aspect_ratios)
|
|
|
|
|
|
|
|
|
max_w = (max_w + 15) // 16 * 16
|
|
|
max_h = (max_h + 15) // 16 * 16
|
|
|
|
|
|
if max_aspect_ratio > 1:
|
|
|
target_width = base_resolution
|
|
|
target_height = int(base_resolution / max_aspect_ratio)
|
|
|
else:
|
|
|
target_height = base_resolution
|
|
|
target_width = int(base_resolution * max_aspect_ratio)
|
|
|
|
|
|
for i in range(image.shape[0]):
|
|
|
x0, y0, w, h = bbox_params[i]
|
|
|
|
|
|
|
|
|
x_center = x0 + w / 2
|
|
|
y_center = y0 + h / 2
|
|
|
|
|
|
x0_new = int(max(0, x_center - max_w / 2))
|
|
|
y0_new = int(max(0, y_center - max_h / 2))
|
|
|
x1_new = int(min(x0_new + max_w, image.shape[2]))
|
|
|
y1_new = int(min(y0_new + max_h, image.shape[1]))
|
|
|
x0_new = x1_new - max_w
|
|
|
y0_new = y1_new - max_h
|
|
|
|
|
|
cropped_image = image[i][y0_new:y1_new, x0_new:x1_new, :]
|
|
|
cropped_mask = mask[i][y0_new:y1_new, x0_new:x1_new]
|
|
|
|
|
|
|
|
|
target_width = (target_width + 15) // 16 * 16
|
|
|
target_height = (target_height + 15) // 16 * 16
|
|
|
|
|
|
cropped_image = cropped_image.unsqueeze(0).movedim(-1, 1)
|
|
|
cropped_image = common_upscale(cropped_image, target_width, target_height, "lanczos", "disabled")
|
|
|
cropped_image = cropped_image.movedim(1, -1).squeeze(0)
|
|
|
|
|
|
cropped_mask = cropped_mask.unsqueeze(0).unsqueeze(0)
|
|
|
cropped_mask = common_upscale(cropped_mask, target_width, target_height, 'bilinear', "disabled")
|
|
|
cropped_mask = cropped_mask.squeeze(0).squeeze(0)
|
|
|
|
|
|
image_list.append(cropped_image)
|
|
|
mask_list.append(cropped_mask)
|
|
|
bbox_list.append((x0_new, y0_new, x1_new, y1_new))
|
|
|
|
|
|
|
|
|
return (torch.stack(image_list), torch.stack(mask_list), bbox_list)
|
|
|
|
|
|
class ImageUncropByMask:
|
|
|
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required":
|
|
|
{
|
|
|
"destination": ("IMAGE",),
|
|
|
"source": ("IMAGE",),
|
|
|
"mask": ("MASK",),
|
|
|
"bbox": ("BBOX",),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
|
RETURN_NAMES = ("image",)
|
|
|
FUNCTION = "uncrop"
|
|
|
|
|
|
def uncrop(self, destination, source, mask, bbox=None):
|
|
|
|
|
|
output_list = []
|
|
|
|
|
|
B, H, W, C = destination.shape
|
|
|
|
|
|
for i in range(source.shape[0]):
|
|
|
x0, y0, x1, y1 = bbox[i]
|
|
|
bbox_height = y1 - y0
|
|
|
bbox_width = x1 - x0
|
|
|
|
|
|
|
|
|
|
|
|
resized_source = common_upscale(source[i].unsqueeze(0).movedim(-1, 1), bbox_width, bbox_height, "lanczos", "disabled")
|
|
|
resized_source = resized_source.movedim(1, -1).squeeze(0)
|
|
|
|
|
|
|
|
|
resized_mask = common_upscale(mask[i].unsqueeze(0).unsqueeze(0), bbox_width, bbox_height, "bilinear", "disabled")
|
|
|
resized_mask = resized_mask.squeeze(0).squeeze(0)
|
|
|
|
|
|
|
|
|
pad_left = x0
|
|
|
pad_right = W - x1
|
|
|
pad_top = y0
|
|
|
pad_bottom = H - y1
|
|
|
|
|
|
|
|
|
padded_source = F.pad(resized_source, pad=(0, 0, pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
|
|
|
padded_mask = F.pad(resized_mask, pad=(pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
|
|
|
|
|
|
|
|
|
padded_mask = padded_mask.unsqueeze(2).expand(-1, -1, destination[i].shape[2])
|
|
|
|
|
|
padded_source = padded_source.unsqueeze(2).expand(-1, -1, -1, destination[i].shape[2]).squeeze(2)
|
|
|
|
|
|
|
|
|
result = destination[i] * (1.0 - padded_mask) + padded_source * padded_mask
|
|
|
|
|
|
output_list.append(result)
|
|
|
|
|
|
|
|
|
return (torch.stack(output_list),) |