|
|
|
|
|
import torch
|
|
|
from torch import nn, Tensor
|
|
|
from torchvision import transforms
|
|
|
from torchvision.transforms import functional
|
|
|
import os
|
|
|
import logging
|
|
|
import folder_paths
|
|
|
import comfy.utils
|
|
|
from comfy.ldm.flux.layers import timestep_embedding
|
|
|
from insightface.app import FaceAnalysis
|
|
|
from facexlib.parsing import init_parsing_model
|
|
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
from .eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
|
|
from .encoders_flux import IDFormer, PerceiverAttentionCA
|
|
|
|
|
|
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface")
|
|
|
|
|
|
MODELS_DIR = os.path.join(folder_paths.models_dir, "pulid")
|
|
|
if "pulid" not in folder_paths.folder_names_and_paths:
|
|
|
current_paths = [MODELS_DIR]
|
|
|
else:
|
|
|
current_paths, _ = folder_paths.folder_names_and_paths["pulid"]
|
|
|
folder_paths.folder_names_and_paths["pulid"] = (current_paths, folder_paths.supported_pt_extensions)
|
|
|
|
|
|
from .online_train2 import online_train
|
|
|
|
|
|
class PulidFluxModel(nn.Module):
|
|
|
def __init__(self):
|
|
|
super().__init__()
|
|
|
|
|
|
self.double_interval = 2
|
|
|
self.single_interval = 4
|
|
|
|
|
|
|
|
|
self.pulid_encoder = IDFormer()
|
|
|
|
|
|
|
|
|
num_ca = 19 // self.double_interval + 38 // self.single_interval
|
|
|
if 19 % self.double_interval != 0:
|
|
|
num_ca += 1
|
|
|
if 38 % self.single_interval != 0:
|
|
|
num_ca += 1
|
|
|
self.pulid_ca = nn.ModuleList([
|
|
|
PerceiverAttentionCA() for _ in range(num_ca)
|
|
|
])
|
|
|
|
|
|
def from_pretrained(self, path: str):
|
|
|
state_dict = comfy.utils.load_torch_file(path, safe_load=True)
|
|
|
state_dict_dict = {}
|
|
|
for k, v in state_dict.items():
|
|
|
module = k.split('.')[0]
|
|
|
state_dict_dict.setdefault(module, {})
|
|
|
new_k = k[len(module) + 1:]
|
|
|
state_dict_dict[module][new_k] = v
|
|
|
|
|
|
for module in state_dict_dict:
|
|
|
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
|
|
|
|
|
|
del state_dict
|
|
|
del state_dict_dict
|
|
|
|
|
|
def get_embeds(self, face_embed, clip_embeds):
|
|
|
return self.pulid_encoder(face_embed, clip_embeds)
|
|
|
|
|
|
def forward_orig(
|
|
|
self,
|
|
|
img: Tensor,
|
|
|
img_ids: Tensor,
|
|
|
txt: Tensor,
|
|
|
txt_ids: Tensor,
|
|
|
timesteps: Tensor,
|
|
|
y: Tensor,
|
|
|
guidance: Tensor = None,
|
|
|
control=None,
|
|
|
) -> Tensor:
|
|
|
if img.ndim != 3 or txt.ndim != 3:
|
|
|
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
|
|
|
|
|
|
|
|
img = self.img_in(img)
|
|
|
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
|
|
if self.params.guidance_embed:
|
|
|
if guidance is None:
|
|
|
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
|
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
|
|
|
|
|
vec = vec + self.vector_in(y)
|
|
|
txt = self.txt_in(txt)
|
|
|
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1)
|
|
|
pe = self.pe_embedder(ids)
|
|
|
|
|
|
ca_idx = 0
|
|
|
for i, block in enumerate(self.double_blocks):
|
|
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
|
|
|
|
|
if control is not None:
|
|
|
control_i = control.get("input")
|
|
|
if i < len(control_i):
|
|
|
add = control_i[i]
|
|
|
if add is not None:
|
|
|
img += add
|
|
|
|
|
|
|
|
|
if self.pulid_data:
|
|
|
if i % self.pulid_double_interval == 0:
|
|
|
|
|
|
for _, node_data in self.pulid_data.items():
|
|
|
if node_data['sigma_start'] >= timesteps >= node_data['sigma_end']:
|
|
|
img = img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], img)
|
|
|
ca_idx += 1
|
|
|
|
|
|
img = torch.cat((txt, img), 1)
|
|
|
|
|
|
for i, block in enumerate(self.single_blocks):
|
|
|
img = block(img, vec=vec, pe=pe)
|
|
|
|
|
|
if control is not None:
|
|
|
control_o = control.get("output")
|
|
|
if i < len(control_o):
|
|
|
add = control_o[i]
|
|
|
if add is not None:
|
|
|
img[:, txt.shape[1] :, ...] += add
|
|
|
|
|
|
|
|
|
if self.pulid_data:
|
|
|
real_img, txt = img[:, txt.shape[1]:, ...], img[:, :txt.shape[1], ...]
|
|
|
if i % self.pulid_single_interval == 0:
|
|
|
|
|
|
for _, node_data in self.pulid_data.items():
|
|
|
if node_data['sigma_start'] >= timesteps >= node_data['sigma_end']:
|
|
|
real_img = real_img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], real_img)
|
|
|
ca_idx += 1
|
|
|
img = torch.cat((txt, real_img), 1)
|
|
|
|
|
|
img = img[:, txt.shape[1] :, ...]
|
|
|
|
|
|
img = self.final_layer(img, vec)
|
|
|
return img
|
|
|
|
|
|
def tensor_to_image(tensor):
|
|
|
image = tensor.mul(255).clamp(0, 255).byte().cpu()
|
|
|
image = image[..., [2, 1, 0]].numpy()
|
|
|
return image
|
|
|
|
|
|
def image_to_tensor(image):
|
|
|
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1)
|
|
|
tensor = tensor[..., [2, 1, 0]]
|
|
|
return tensor
|
|
|
|
|
|
def resize_with_pad(img, target_size):
|
|
|
img = img.permute(0, 3, 1, 2)
|
|
|
H, W = target_size
|
|
|
|
|
|
h, w = img.shape[2], img.shape[3]
|
|
|
scale_h = H / h
|
|
|
scale_w = W / w
|
|
|
scale = min(scale_h, scale_w)
|
|
|
|
|
|
new_h = int(min(h * scale,H))
|
|
|
new_w = int(min(w * scale,W))
|
|
|
new_size = (new_h, new_w)
|
|
|
|
|
|
img = F.interpolate(img, size=new_size, mode='bicubic', align_corners=False)
|
|
|
|
|
|
pad_top = (H - new_h) // 2
|
|
|
pad_bottom = (H - new_h) - pad_top
|
|
|
pad_left = (W - new_w) // 2
|
|
|
pad_right = (W - new_w) - pad_left
|
|
|
img = F.pad(img, pad=(pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
|
|
|
|
|
|
return img.permute(0, 2, 3, 1)
|
|
|
|
|
|
def to_gray(img):
|
|
|
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
|
|
|
x = x.repeat(1, 3, 1, 1)
|
|
|
return x
|
|
|
|
|
|
"""
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
Nodes
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
"""
|
|
|
|
|
|
class PulidFluxModelLoader:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {"required": {"pulid_file": (folder_paths.get_filename_list("pulid"), )}}
|
|
|
|
|
|
RETURN_TYPES = ("PULIDFLUX",)
|
|
|
FUNCTION = "load_model"
|
|
|
CATEGORY = "pulid"
|
|
|
|
|
|
def load_model(self, pulid_file):
|
|
|
model_path = folder_paths.get_full_path("pulid", pulid_file)
|
|
|
|
|
|
|
|
|
model = PulidFluxModel()
|
|
|
|
|
|
logging.info("Loading PuLID-Flux model.")
|
|
|
model.from_pretrained(path=model_path)
|
|
|
|
|
|
return (model,)
|
|
|
|
|
|
class PulidFluxInsightFaceLoader:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"provider": (["CPU", "CUDA", "ROCM"], ),
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("FACEANALYSIS",)
|
|
|
FUNCTION = "load_insightface"
|
|
|
CATEGORY = "pulid"
|
|
|
|
|
|
def load_insightface(self, provider):
|
|
|
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',])
|
|
|
model.prepare(ctx_id=0, det_size=(640, 640))
|
|
|
|
|
|
return (model,)
|
|
|
|
|
|
class PulidFluxEvaClipLoader:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("EVA_CLIP",)
|
|
|
FUNCTION = "load_eva_clip"
|
|
|
CATEGORY = "pulid"
|
|
|
|
|
|
def load_eva_clip(self):
|
|
|
from .eva_clip.factory import create_model_and_transforms
|
|
|
|
|
|
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
|
|
|
|
|
|
model = model.visual
|
|
|
|
|
|
eva_transform_mean = getattr(model, 'image_mean', OPENAI_DATASET_MEAN)
|
|
|
eva_transform_std = getattr(model, 'image_std', OPENAI_DATASET_STD)
|
|
|
if not isinstance(eva_transform_mean, (list, tuple)):
|
|
|
model["image_mean"] = (eva_transform_mean,) * 3
|
|
|
if not isinstance(eva_transform_std, (list, tuple)):
|
|
|
model["image_std"] = (eva_transform_std,) * 3
|
|
|
|
|
|
return (model,)
|
|
|
|
|
|
class ApplyPulidFlux:
|
|
|
@classmethod
|
|
|
def INPUT_TYPES(s):
|
|
|
return {
|
|
|
"required": {
|
|
|
"model": ("MODEL", ),
|
|
|
"pulid_flux": ("PULIDFLUX", ),
|
|
|
"eva_clip": ("EVA_CLIP", ),
|
|
|
"face_analysis": ("FACEANALYSIS", ),
|
|
|
"image": ("IMAGE", ),
|
|
|
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 5.0, "step": 0.05 }),
|
|
|
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
|
|
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
|
|
"fusion": (["mean","concat","max","norm_id","max_token","auto_weight","train_weight"],),
|
|
|
"fusion_weight_max": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 20.0, "step": 0.1 }),
|
|
|
"fusion_weight_min": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 20.0, "step": 0.1 }),
|
|
|
"train_step": ("INT", {"default": 1000, "min": 0, "max": 20000, "step": 1 }),
|
|
|
"use_gray": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
|
|
|
},
|
|
|
"optional": {
|
|
|
"attn_mask": ("MASK", ),
|
|
|
"prior_image": ("IMAGE",),
|
|
|
},
|
|
|
"hidden": {
|
|
|
"unique_id": "UNIQUE_ID"
|
|
|
},
|
|
|
}
|
|
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
|
FUNCTION = "apply_pulid_flux"
|
|
|
CATEGORY = "pulid"
|
|
|
|
|
|
def __init__(self):
|
|
|
self.pulid_data_dict = None
|
|
|
|
|
|
def apply_pulid_flux(self, model, pulid_flux, eva_clip, face_analysis, image, weight, start_at, end_at, prior_image=None,fusion="mean", fusion_weight_max=1.0, fusion_weight_min=0.0, train_step=1000, use_gray=True, attn_mask=None, unique_id=None):
|
|
|
device = comfy.model_management.get_torch_device()
|
|
|
|
|
|
|
|
|
|
|
|
dtype = model.model.diffusion_model.dtype
|
|
|
|
|
|
if dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
|
|
dtype = torch.bfloat16
|
|
|
|
|
|
eva_clip.to(device, dtype=dtype)
|
|
|
pulid_flux.to(device, dtype=dtype)
|
|
|
|
|
|
|
|
|
if attn_mask is not None:
|
|
|
if attn_mask.dim() > 3:
|
|
|
attn_mask = attn_mask.squeeze(-1)
|
|
|
elif attn_mask.dim() < 3:
|
|
|
attn_mask = attn_mask.unsqueeze(0)
|
|
|
attn_mask = attn_mask.to(device, dtype=dtype)
|
|
|
|
|
|
if prior_image is not None:
|
|
|
prior_image = resize_with_pad(prior_image.to(image.device, dtype=image.dtype), target_size=(image.shape[1], image.shape[2]))
|
|
|
image=torch.cat((prior_image,image),dim=0)
|
|
|
image = tensor_to_image(image)
|
|
|
|
|
|
face_helper = FaceRestoreHelper(
|
|
|
upscale_factor=1,
|
|
|
face_size=512,
|
|
|
crop_ratio=(1, 1),
|
|
|
det_model='retinaface_resnet50',
|
|
|
save_ext='png',
|
|
|
device=device,
|
|
|
)
|
|
|
|
|
|
face_helper.face_parse = None
|
|
|
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device)
|
|
|
|
|
|
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
|
|
cond = []
|
|
|
|
|
|
|
|
|
for i in range(image.shape[0]):
|
|
|
|
|
|
iface_embeds = None
|
|
|
for size in [(size, size) for size in range(640, 256, -64)]:
|
|
|
face_analysis.det_model.input_size = size
|
|
|
face_info = face_analysis.get(image[i])
|
|
|
if face_info:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
face_info = sorted(face_info, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
|
|
|
iface_embeds = torch.from_numpy(face_info.embedding).unsqueeze(0).to(device, dtype=dtype)
|
|
|
break
|
|
|
else:
|
|
|
|
|
|
logging.warning(f'Warning: No face detected in image {str(i)}')
|
|
|
continue
|
|
|
|
|
|
|
|
|
face_helper.clean_all()
|
|
|
face_helper.read_image(image[i])
|
|
|
face_helper.get_face_landmarks_5(only_center_face=True)
|
|
|
face_helper.align_warp_face()
|
|
|
|
|
|
if len(face_helper.cropped_faces) == 0:
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
align_face = face_helper.cropped_faces[0]
|
|
|
|
|
|
align_face = image_to_tensor(align_face).unsqueeze(0).permute(0, 3, 1, 2).to(device)
|
|
|
parsing_out = face_helper.face_parse(functional.normalize(align_face, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
|
|
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
|
|
|
bg = sum(parsing_out == i for i in bg_label).bool()
|
|
|
white_image = torch.ones_like(align_face)
|
|
|
|
|
|
if use_gray:
|
|
|
_align_face = to_gray(align_face)
|
|
|
else:
|
|
|
_align_face = align_face
|
|
|
face_features_image = torch.where(bg, white_image, _align_face)
|
|
|
|
|
|
|
|
|
|
|
|
face_features_image = functional.resize(face_features_image, eva_clip.image_size, transforms.InterpolationMode.BICUBIC if 'cuda' in device.type else transforms.InterpolationMode.NEAREST).to(device, dtype=dtype)
|
|
|
face_features_image = functional.normalize(face_features_image, eva_clip.image_mean, eva_clip.image_std)
|
|
|
|
|
|
|
|
|
id_cond_vit, id_vit_hidden = eva_clip(face_features_image, return_all_features=False, return_hidden=True, shuffle=False)
|
|
|
id_cond_vit = id_cond_vit.to(device, dtype=dtype)
|
|
|
for idx in range(len(id_vit_hidden)):
|
|
|
id_vit_hidden[idx] = id_vit_hidden[idx].to(device, dtype=dtype)
|
|
|
|
|
|
id_cond_vit = torch.div(id_cond_vit, torch.norm(id_cond_vit, 2, 1, True))
|
|
|
|
|
|
|
|
|
id_cond = torch.cat([iface_embeds, id_cond_vit], dim=-1)
|
|
|
|
|
|
|
|
|
cond.append(pulid_flux.get_embeds(id_cond, id_vit_hidden))
|
|
|
|
|
|
if not cond:
|
|
|
|
|
|
logging.warning("PuLID warning: No faces detected in any of the given images, returning unmodified model.")
|
|
|
return (model,)
|
|
|
|
|
|
|
|
|
if fusion == "mean":
|
|
|
cond = torch.cat(cond).to(device, dtype=dtype)
|
|
|
if cond.shape[0] > 1:
|
|
|
cond = torch.mean(cond, dim=0, keepdim=True)
|
|
|
elif fusion == "concat":
|
|
|
cond = torch.cat(cond, dim=1).to(device, dtype=dtype)
|
|
|
elif fusion == "max":
|
|
|
cond = torch.cat(cond).to(device, dtype=dtype)
|
|
|
if cond.shape[0] > 1:
|
|
|
cond = torch.max(cond, dim=0, keepdim=True)[0]
|
|
|
elif fusion == "norm_id":
|
|
|
cond = torch.cat(cond).to(device, dtype=dtype)
|
|
|
if cond.shape[0] > 1:
|
|
|
norm=torch.norm(cond,dim=(1,2))
|
|
|
norm=norm/torch.sum(norm)
|
|
|
cond=torch.einsum("wij,w->ij",cond,norm).unsqueeze(0)
|
|
|
elif fusion == "max_token":
|
|
|
cond = torch.cat(cond).to(device, dtype=dtype)
|
|
|
if cond.shape[0] > 1:
|
|
|
norm=torch.norm(cond,dim=2)
|
|
|
_,idx=torch.max(norm,dim=0)
|
|
|
cond=torch.stack([cond[j,i] for i,j in enumerate(idx)]).unsqueeze(0)
|
|
|
elif fusion == "auto_weight":
|
|
|
cond = torch.cat(cond).to(device, dtype=dtype)
|
|
|
if cond.shape[0] > 1:
|
|
|
norm=torch.norm(cond,dim=2)
|
|
|
order=torch.argsort(norm,descending=False,dim=0)
|
|
|
regular_weight=torch.linspace(fusion_weight_min,fusion_weight_max,norm.shape[0]).to(device, dtype=dtype)
|
|
|
|
|
|
_cond=[]
|
|
|
for i in range(cond.shape[1]):
|
|
|
o=order[:,i]
|
|
|
_cond.append(torch.einsum('ij,i->j',cond[:,i,:],regular_weight[o]))
|
|
|
cond=torch.stack(_cond,dim=0).unsqueeze(0)
|
|
|
elif fusion == "train_weight":
|
|
|
cond = torch.cat(cond).to(device, dtype=dtype)
|
|
|
if cond.shape[0] > 1:
|
|
|
if train_step > 0:
|
|
|
with torch.inference_mode(False):
|
|
|
cond = online_train(cond, device=cond.device, step=train_step)
|
|
|
else:
|
|
|
cond = torch.mean(cond, dim=0, keepdim=True)
|
|
|
|
|
|
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
|
|
|
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux_model = model.model.diffusion_model
|
|
|
|
|
|
if not hasattr(flux_model, "pulid_ca"):
|
|
|
|
|
|
|
|
|
|
|
|
flux_model.pulid_ca = pulid_flux.pulid_ca
|
|
|
flux_model.pulid_double_interval = pulid_flux.double_interval
|
|
|
flux_model.pulid_single_interval = pulid_flux.single_interval
|
|
|
flux_model.pulid_data = {}
|
|
|
|
|
|
new_method = forward_orig.__get__(flux_model, flux_model.__class__)
|
|
|
setattr(flux_model, 'forward_orig', new_method)
|
|
|
|
|
|
|
|
|
flux_model.pulid_data[unique_id] = {
|
|
|
'weight': weight,
|
|
|
'embedding': cond,
|
|
|
'sigma_start': sigma_start,
|
|
|
'sigma_end': sigma_end,
|
|
|
}
|
|
|
|
|
|
|
|
|
self.pulid_data_dict = {'data': flux_model.pulid_data, 'unique_id': unique_id}
|
|
|
|
|
|
return (model,)
|
|
|
|
|
|
def __del__(self):
|
|
|
|
|
|
if self.pulid_data_dict:
|
|
|
del self.pulid_data_dict['data'][self.pulid_data_dict['unique_id']]
|
|
|
del self.pulid_data_dict
|
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
"PulidFluxModelLoader": PulidFluxModelLoader,
|
|
|
"PulidFluxInsightFaceLoader": PulidFluxInsightFaceLoader,
|
|
|
"PulidFluxEvaClipLoader": PulidFluxEvaClipLoader,
|
|
|
"ApplyPulidFlux": ApplyPulidFlux,
|
|
|
}
|
|
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
|
"PulidFluxModelLoader": "Load PuLID Flux Model",
|
|
|
"PulidFluxInsightFaceLoader": "Load InsightFace (PuLID Flux)",
|
|
|
"PulidFluxEvaClipLoader": "Load Eva Clip (PuLID Flux)",
|
|
|
"ApplyPulidFlux": "Apply PuLID Flux",
|
|
|
}
|
|
|
|