|
|
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs |
|
|
import comfy.model_management as model_management |
|
|
|
|
|
class DensePose_Preprocessor: |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return define_preprocessor_inputs( |
|
|
model=INPUT.COMBO(["densepose_r50_fpn_dl.torchscript", "densepose_r101_fpn_dl.torchscript"]), |
|
|
cmap=INPUT.COMBO(["Viridis (MagicAnimate)", "Parula (CivitAI)"]), |
|
|
resolution=INPUT.RESOLUTION() |
|
|
) |
|
|
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
|
FUNCTION = "execute" |
|
|
|
|
|
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators" |
|
|
|
|
|
def execute(self, image, model="densepose_r50_fpn_dl.torchscript", cmap="Viridis (MagicAnimate)", resolution=512): |
|
|
from custom_controlnet_aux.densepose import DenseposeDetector |
|
|
model = DenseposeDetector \ |
|
|
.from_pretrained(filename=model) \ |
|
|
.to(model_management.get_torch_device()) |
|
|
return (common_annotator_call(model, image, cmap="viridis" if "Viridis" in cmap else "parula", resolution=resolution), ) |
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
|
"DensePosePreprocessor": DensePose_Preprocessor |
|
|
} |
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
|
"DensePosePreprocessor": "DensePose Estimator" |
|
|
} |