|
|
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT |
|
|
import comfy.model_management as model_management |
|
|
import json |
|
|
|
|
|
class OpenPose_Preprocessor: |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return define_preprocessor_inputs( |
|
|
detect_hand=INPUT.COMBO(["enable", "disable"]), |
|
|
detect_body=INPUT.COMBO(["enable", "disable"]), |
|
|
detect_face=INPUT.COMBO(["enable", "disable"]), |
|
|
resolution=INPUT.RESOLUTION(), |
|
|
scale_stick_for_xinsr_cn=INPUT.COMBO(["disable", "enable"]) |
|
|
) |
|
|
|
|
|
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT") |
|
|
FUNCTION = "estimate_pose" |
|
|
|
|
|
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators" |
|
|
|
|
|
def estimate_pose(self, image, detect_hand="enable", detect_body="enable", detect_face="enable", scale_stick_for_xinsr_cn="disable", resolution=512, **kwargs): |
|
|
from custom_controlnet_aux.open_pose import OpenposeDetector |
|
|
|
|
|
detect_hand = detect_hand == "enable" |
|
|
detect_body = detect_body == "enable" |
|
|
detect_face = detect_face == "enable" |
|
|
scale_stick_for_xinsr_cn = scale_stick_for_xinsr_cn == "enable" |
|
|
|
|
|
model = OpenposeDetector.from_pretrained().to(model_management.get_torch_device()) |
|
|
self.openpose_dicts = [] |
|
|
def func(image, **kwargs): |
|
|
pose_img, openpose_dict = model(image, **kwargs) |
|
|
self.openpose_dicts.append(openpose_dict) |
|
|
return pose_img |
|
|
|
|
|
out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, xinsr_stick_scaling=scale_stick_for_xinsr_cn, resolution=resolution) |
|
|
del model |
|
|
return { |
|
|
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] }, |
|
|
"result": (out, self.openpose_dicts) |
|
|
} |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
|
"OpenposePreprocessor": OpenPose_Preprocessor, |
|
|
} |
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
|
"OpenposePreprocessor": "OpenPose Pose", |
|
|
} |