|
|
import folder_paths |
|
|
import json |
|
|
import os |
|
|
import numpy as np |
|
|
import cv2 |
|
|
from PIL import ImageColor |
|
|
from einops import rearrange |
|
|
import torch |
|
|
import itertools |
|
|
|
|
|
from ..src.custom_controlnet_aux.dwpose import draw_poses, draw_animalposes, decode_json_as_poses |
|
|
|
|
|
|
|
|
""" |
|
|
Format of POSE_KEYPOINT (AP10K keypoints): |
|
|
[{ |
|
|
"version": "ap10k", |
|
|
"animals": [ |
|
|
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]], |
|
|
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]], |
|
|
... |
|
|
], |
|
|
"canvas_height": 512, |
|
|
"canvas_width": 768 |
|
|
},...] |
|
|
Format of POSE_KEYPOINT (OpenPose keypoints): |
|
|
[{ |
|
|
"people": [ |
|
|
{ |
|
|
'pose_keypoints_2d': [[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]] |
|
|
"face_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x68, y68, 1]], |
|
|
"hand_left_keypoints_2d": [[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]], |
|
|
"hand_right_keypoints_2d":[[x1, y1, 1], [x2, y2, 1],..., [x21, y21, 1]], |
|
|
} |
|
|
], |
|
|
"canvas_height": canvas_height, |
|
|
"canvas_width": canvas_width, |
|
|
},...] |
|
|
""" |
|
|
|
|
|
class SavePoseKpsAsJsonFile: |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"pose_kps": ("POSE_KEYPOINT",), |
|
|
"filename_prefix": ("STRING", {"default": "PoseKeypoint"}) |
|
|
} |
|
|
} |
|
|
RETURN_TYPES = () |
|
|
FUNCTION = "save_pose_kps" |
|
|
OUTPUT_NODE = True |
|
|
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" |
|
|
def __init__(self): |
|
|
self.output_dir = folder_paths.get_output_directory() |
|
|
self.type = "output" |
|
|
self.prefix_append = "" |
|
|
def save_pose_kps(self, pose_kps, filename_prefix): |
|
|
filename_prefix += self.prefix_append |
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = \ |
|
|
folder_paths.get_save_image_path(filename_prefix, self.output_dir, pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"]) |
|
|
file = f"{filename}_{counter:05}.json" |
|
|
with open(os.path.join(full_output_folder, file), 'w') as f: |
|
|
json.dump(pose_kps , f) |
|
|
return {} |
|
|
|
|
|
|
|
|
|
|
|
FACIAL_PARTS = ["skin", "left_eye", "right_eye", "nose", "upper_lip", "inner_mouth", "lower_lip"] |
|
|
LAPA_COLORS = dict( |
|
|
skin="rgb(0, 153, 255)", |
|
|
left_eye="rgb(0, 204, 153)", |
|
|
right_eye="rgb(255, 153, 0)", |
|
|
nose="rgb(255, 102, 255)", |
|
|
upper_lip="rgb(102, 0, 51)", |
|
|
inner_mouth="rgb(255, 204, 255)", |
|
|
lower_lip="rgb(255, 0, 102)" |
|
|
) |
|
|
|
|
|
|
|
|
def kps_idxs(start, end): |
|
|
step = -1 if start > end else 1 |
|
|
return list(range(start-1, end+1-1, step)) |
|
|
|
|
|
|
|
|
FACIAL_PART_RANGES = dict( |
|
|
skin=kps_idxs(1, 17) + kps_idxs(27, 18), |
|
|
nose=kps_idxs(28, 36), |
|
|
left_eye=kps_idxs(37, 42), |
|
|
right_eye=kps_idxs(43, 48), |
|
|
upper_lip=kps_idxs(49, 55) + kps_idxs(65, 61), |
|
|
lower_lip=kps_idxs(61, 68), |
|
|
inner_mouth=kps_idxs(61, 65) + kps_idxs(55, 49) |
|
|
) |
|
|
|
|
|
def is_normalized(keypoints) -> bool: |
|
|
point_normalized = [ |
|
|
0 <= np.abs(k[0]) <= 1 and 0 <= np.abs(k[1]) <= 1 |
|
|
for k in keypoints |
|
|
if k is not None |
|
|
] |
|
|
if not point_normalized: |
|
|
return False |
|
|
return np.all(point_normalized) |
|
|
|
|
|
class FacialPartColoringFromPoseKps: |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
input_types = { |
|
|
"required": {"pose_kps": ("POSE_KEYPOINT",), "mode": (["point", "polygon"], {"default": "polygon"})} |
|
|
} |
|
|
for facial_part in FACIAL_PARTS: |
|
|
input_types["required"][facial_part] = ("STRING", {"default": LAPA_COLORS[facial_part], "multiline": False}) |
|
|
return input_types |
|
|
RETURN_TYPES = ("IMAGE",) |
|
|
FUNCTION = "colorize" |
|
|
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" |
|
|
def colorize(self, pose_kps, mode, **facial_part_colors): |
|
|
pose_frames = pose_kps |
|
|
np_frames = [self.draw_kps(pose_frame, mode, **facial_part_colors) for pose_frame in pose_frames] |
|
|
np_frames = np.stack(np_frames, axis=0) |
|
|
return (torch.from_numpy(np_frames).float() / 255.,) |
|
|
|
|
|
def draw_kps(self, pose_frame, mode, **facial_part_colors): |
|
|
width, height = pose_frame["canvas_width"], pose_frame["canvas_height"] |
|
|
canvas = np.zeros((height, width, 3), dtype=np.uint8) |
|
|
for person, part_name in itertools.product(pose_frame["people"], FACIAL_PARTS): |
|
|
n = len(person["face_keypoints_2d"]) // 3 |
|
|
facial_kps = rearrange(np.array(person["face_keypoints_2d"]), "(n c) -> n c", n=n, c=3)[:, :2] |
|
|
if is_normalized(facial_kps): |
|
|
facial_kps *= (width, height) |
|
|
facial_kps = facial_kps.astype(np.int32) |
|
|
part_color = ImageColor.getrgb(facial_part_colors[part_name])[:3] |
|
|
part_contours = facial_kps[FACIAL_PART_RANGES[part_name], :] |
|
|
if mode == "point": |
|
|
for pt in part_contours: |
|
|
cv2.circle(canvas, pt, radius=2, color=part_color, thickness=-1) |
|
|
else: |
|
|
cv2.fillPoly(canvas, pts=[part_contours], color=part_color) |
|
|
return canvas |
|
|
|
|
|
|
|
|
BODY_PART_INDEXES = { |
|
|
"Head": (16, 14, 0, 15, 17), |
|
|
"Neck": (0, 1), |
|
|
"Shoulder": (2, 5), |
|
|
"Torso": (2, 5, 8, 11), |
|
|
"RArm": (2, 3), |
|
|
"RForearm": (3, 4), |
|
|
"LArm": (5, 6), |
|
|
"LForearm": (6, 7), |
|
|
"RThigh": (8, 9), |
|
|
"RLeg": (9, 10), |
|
|
"LThigh": (11, 12), |
|
|
"LLeg": (12, 13) |
|
|
} |
|
|
BODY_PART_DEFAULT_W_H = { |
|
|
"Head": "256, 256", |
|
|
"Neck": "100, 100", |
|
|
"Shoulder": '', |
|
|
"Torso": "350, 450", |
|
|
"RArm": "128, 256", |
|
|
"RForearm": "128, 256", |
|
|
"LArm": "128, 256", |
|
|
"LForearm": "128, 256", |
|
|
"RThigh": "128, 256", |
|
|
"RLeg": "128, 256", |
|
|
"LThigh": "128, 256", |
|
|
"LLeg": "128, 256" |
|
|
} |
|
|
|
|
|
class SinglePersonProcess: |
|
|
@classmethod |
|
|
def sort_and_get_max_people(s, pose_kps): |
|
|
for idx in range(len(pose_kps)): |
|
|
pose_kps[idx]["people"] = sorted(pose_kps[idx]["people"], key=lambda person:person["pose_keypoints_2d"][0]) |
|
|
return pose_kps, max(len(frame["people"]) for frame in pose_kps) |
|
|
|
|
|
def __init__(self, pose_kps, person_idx=0) -> None: |
|
|
self.width, self.height = pose_kps[0]["canvas_width"], pose_kps[0]["canvas_height"] |
|
|
self.poses = [ |
|
|
self.normalize(pose_frame["people"][person_idx]["pose_keypoints_2d"]) |
|
|
if person_idx < len(pose_frame["people"]) |
|
|
else None |
|
|
for pose_frame in pose_kps |
|
|
] |
|
|
|
|
|
def normalize(self, pose_kps_2d): |
|
|
n = len(pose_kps_2d) // 3 |
|
|
pose_kps_2d = rearrange(np.array(pose_kps_2d), "(n c) -> n c", n=n, c=3) |
|
|
pose_kps_2d[np.argwhere(pose_kps_2d[:,2]==0), :] = np.iinfo(np.int32).max // 2 |
|
|
pose_kps_2d = pose_kps_2d[:, :2] |
|
|
if is_normalized(pose_kps_2d): |
|
|
pose_kps_2d *= (self.width, self.height) |
|
|
return pose_kps_2d |
|
|
|
|
|
def get_xyxy_bboxes(self, part_name, bbox_size=(128, 256)): |
|
|
width, height = bbox_size |
|
|
xyxy_bboxes = {} |
|
|
for idx, pose in enumerate(self.poses): |
|
|
if pose is None: |
|
|
xyxy_bboxes[idx] = (np.iinfo(np.int32).max // 2,) * 4 |
|
|
continue |
|
|
pts = pose[BODY_PART_INDEXES[part_name], :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x_mid, y_mid = np.mean(pts[:, 0]), np.mean(pts[:, 1]) |
|
|
xyxy_bboxes[idx] = ( |
|
|
x_mid - width/2, y_mid - height/2, |
|
|
x_mid + width/2, y_mid + height/2 |
|
|
) |
|
|
return xyxy_bboxes |
|
|
|
|
|
class UpperBodyTrackingFromPoseKps: |
|
|
PART_NAMES = ["Head", "Neck", "Shoulder", "Torso", "RArm", "RForearm", "LArm", "LForearm"] |
|
|
|
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"pose_kps": ("POSE_KEYPOINT",), |
|
|
"id_include": ("STRING", {"default": '', "multiline": False}), |
|
|
**{part_name + "_width_height": ("STRING", {"default": BODY_PART_DEFAULT_W_H[part_name], "multiline": False}) for part_name in s.PART_NAMES} |
|
|
} |
|
|
} |
|
|
|
|
|
RETURN_TYPES = ("TRACKING", "STRING") |
|
|
RETURN_NAMES = ("tracking", "prompt") |
|
|
FUNCTION = "convert" |
|
|
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" |
|
|
|
|
|
def convert(self, pose_kps, id_include, **parts_width_height): |
|
|
parts_width_height = {part_name.replace("_width_height", ''): value for part_name, value in parts_width_height.items()} |
|
|
enabled_part_names = [part_name for part_name in self.PART_NAMES if len(parts_width_height[part_name].strip())] |
|
|
tracked = {part_name: {} for part_name in enabled_part_names} |
|
|
id_include = id_include.strip() |
|
|
id_include = list(map(int, id_include.split(','))) if len(id_include) else [] |
|
|
prompt_string = '' |
|
|
pose_kps, max_people = SinglePersonProcess.sort_and_get_max_people(pose_kps) |
|
|
|
|
|
for person_idx in range(max_people): |
|
|
if len(id_include) and person_idx not in id_include: |
|
|
continue |
|
|
processor = SinglePersonProcess(pose_kps, person_idx) |
|
|
for part_name in enabled_part_names: |
|
|
bbox_size = tuple(map(int, parts_width_height[part_name].split(','))) |
|
|
part_bboxes = processor.get_xyxy_bboxes(part_name, bbox_size) |
|
|
id_coordinates = {idx: part_bbox+(processor.width, processor.height) for idx, part_bbox in part_bboxes.items()} |
|
|
tracked[part_name][person_idx] = id_coordinates |
|
|
|
|
|
for class_name, class_data in tracked.items(): |
|
|
for class_id in class_data.keys(): |
|
|
class_id_str = str(class_id) |
|
|
|
|
|
_class_name = class_name.replace('L', '').replace('R', '').lower() |
|
|
prompt_string += f'"{class_id_str}.{class_name}": "({_class_name})",\n' |
|
|
|
|
|
return (tracked, prompt_string) |
|
|
|
|
|
|
|
|
def numpy2torch(np_image: np.ndarray) -> torch.Tensor: |
|
|
""" [H, W, C] => [B=1, H, W, C]""" |
|
|
return torch.from_numpy(np_image.astype(np.float32) / 255).unsqueeze(0) |
|
|
|
|
|
|
|
|
class RenderPeopleKps: |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"kps": ("POSE_KEYPOINT",), |
|
|
"render_body": ("BOOLEAN", {"default": True}), |
|
|
"render_hand": ("BOOLEAN", {"default": True}), |
|
|
"render_face": ("BOOLEAN", {"default": True}), |
|
|
} |
|
|
} |
|
|
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
|
FUNCTION = "render" |
|
|
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" |
|
|
|
|
|
def render(self, kps, render_body, render_hand, render_face) -> tuple[np.ndarray]: |
|
|
if isinstance(kps, list): |
|
|
kps = kps[0] |
|
|
|
|
|
poses, _, height, width = decode_json_as_poses(kps) |
|
|
np_image = draw_poses( |
|
|
poses, |
|
|
height, |
|
|
width, |
|
|
render_body, |
|
|
render_hand, |
|
|
render_face, |
|
|
) |
|
|
return (numpy2torch(np_image),) |
|
|
|
|
|
class RenderAnimalKps: |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return { |
|
|
"required": { |
|
|
"kps": ("POSE_KEYPOINT",), |
|
|
} |
|
|
} |
|
|
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
|
FUNCTION = "render" |
|
|
CATEGORY = "ControlNet Preprocessors/Pose Keypoint Postprocess" |
|
|
|
|
|
def render(self, kps) -> tuple[np.ndarray]: |
|
|
if isinstance(kps, list): |
|
|
kps = kps[0] |
|
|
|
|
|
_, poses, height, width = decode_json_as_poses(kps) |
|
|
np_image = draw_animalposes(poses, height, width) |
|
|
return (numpy2torch(np_image),) |
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
|
"SavePoseKpsAsJsonFile": SavePoseKpsAsJsonFile, |
|
|
"FacialPartColoringFromPoseKps": FacialPartColoringFromPoseKps, |
|
|
"UpperBodyTrackingFromPoseKps": UpperBodyTrackingFromPoseKps, |
|
|
"RenderPeopleKps": RenderPeopleKps, |
|
|
"RenderAnimalKps": RenderAnimalKps, |
|
|
} |
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
|
"SavePoseKpsAsJsonFile": "Save Pose Keypoints", |
|
|
"FacialPartColoringFromPoseKps": "Colorize Facial Parts from PoseKPS", |
|
|
"UpperBodyTrackingFromPoseKps": "Upper Body Tracking From PoseKps (InstanceDiffusion)", |
|
|
"RenderPeopleKps": "Render Pose JSON (Human)", |
|
|
"RenderAnimalKps": "Render Pose JSON (Animal)", |
|
|
} |
|
|
|