|
|
""" |
|
|
This part reuses code from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py |
|
|
which is part of a PyTorch port of SMPL. |
|
|
Thanks to Zhang Xiong (MandyMo) for making this great code available on github ! |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
from torch.autograd import gradcheck |
|
|
import torch |
|
|
from torch.autograd import Variable |
|
|
|
|
|
from custom_manopth import argutils |
|
|
|
|
|
|
|
|
def quat2mat(quat): |
|
|
"""Convert quaternion coefficients to rotation matrix. |
|
|
Args: |
|
|
quat: size = [batch_size, 4] 4 <===>(w, x, y, z) |
|
|
Returns: |
|
|
Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] |
|
|
""" |
|
|
norm_quat = quat |
|
|
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) |
|
|
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, |
|
|
2], norm_quat[:, |
|
|
3] |
|
|
|
|
|
batch_size = quat.size(0) |
|
|
|
|
|
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) |
|
|
wx, wy, wz = w * x, w * y, w * z |
|
|
xy, xz, yz = x * y, x * z, y * z |
|
|
|
|
|
rotMat = torch.stack([ |
|
|
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, |
|
|
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, |
|
|
w2 - x2 - y2 + z2 |
|
|
], |
|
|
dim=1).view(batch_size, 3, 3) |
|
|
return rotMat |
|
|
|
|
|
|
|
|
def batch_rodrigues(axisang): |
|
|
|
|
|
axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) |
|
|
angle = torch.unsqueeze(axisang_norm, -1) |
|
|
axisang_normalized = torch.div(axisang, angle) |
|
|
angle = angle * 0.5 |
|
|
v_cos = torch.cos(angle) |
|
|
v_sin = torch.sin(angle) |
|
|
quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) |
|
|
rot_mat = quat2mat(quat) |
|
|
rot_mat = rot_mat.view(rot_mat.shape[0], 9) |
|
|
return rot_mat |
|
|
|
|
|
|
|
|
def th_get_axis_angle(vector): |
|
|
angle = torch.norm(vector, 2, 1) |
|
|
axes = vector / angle.unsqueeze(1) |
|
|
return axes, angle |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument('--batch_size', default=1, type=int) |
|
|
parser.add_argument('--cuda', action='store_true') |
|
|
args = parser.parse_args() |
|
|
|
|
|
argutils.print_args(args) |
|
|
|
|
|
n_components = 6 |
|
|
rot = 3 |
|
|
inputs = torch.rand(args.batch_size, rot) |
|
|
inputs_var = Variable(inputs.double(), requires_grad=True) |
|
|
if args.cuda: |
|
|
inputs = inputs.cuda() |
|
|
|
|
|
test_function = gradcheck(batch_rodrigues, (inputs_var, )) |
|
|
print('batch test passed !') |
|
|
|
|
|
inputs = torch.rand(rot) |
|
|
inputs_var = Variable(inputs.double(), requires_grad=True) |
|
|
test_function = gradcheck(th_cv2_rod_sub_id.apply, (inputs_var, )) |
|
|
print('th_cv2_rod test passed') |
|
|
|
|
|
inputs = torch.rand(rot) |
|
|
inputs_var = Variable(inputs.double(), requires_grad=True) |
|
|
test_th = gradcheck(th_cv2_rod.apply, (inputs_var, )) |
|
|
print('th_cv2_rod_id test passed !') |
|
|
|