Spaces:
Runtime error
Runtime error
isLinXu
commited on
Commit
·
7358262
1
Parent(s):
e50891a
update app.py
Browse files- app.py +223 -0
- requirements.txt +20 -0
app.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
os.system("pip install gradio==3.42.0")
|
| 4 |
+
os.system("pip install 'mmengine>=0.6.0'")
|
| 5 |
+
os.system("pip install 'mmcv>=2.0.0rc4,<2.1.0'")
|
| 6 |
+
os.system("pip install 'mmdet>=3.0.0,<4.0.0'")
|
| 7 |
+
os.system("pip install mmocr")
|
| 8 |
+
|
| 9 |
+
import json
|
| 10 |
+
import os
|
| 11 |
+
from argparse import ArgumentParser
|
| 12 |
+
|
| 13 |
+
import PIL
|
| 14 |
+
import cv2
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
from PIL.Image import Image
|
| 19 |
+
from mmocr.apis.inferencers import MMOCRInferencer
|
| 20 |
+
|
| 21 |
+
import warnings
|
| 22 |
+
|
| 23 |
+
warnings.filterwarnings("ignore")
|
| 24 |
+
|
| 25 |
+
def save_image(img, img_path):
|
| 26 |
+
# Convert PIL image to OpenCV image
|
| 27 |
+
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 28 |
+
# Save OpenCV image
|
| 29 |
+
cv2.imwrite(img_path, img)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
textdet_model_list = ['DBNet', 'DRRG', 'FCENet', 'PANet', 'PSENet', 'TextSnake', 'MaskRCNN']
|
| 33 |
+
textrec_model_list = ['ABINet', 'ASTER', 'CRNN', 'MASTER', 'NRTR', 'RobustScanner', 'SARNet', 'SATRN', 'SVTR']
|
| 34 |
+
textkie_model_list = ['SDMGR','SDMGR']
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def ocr_inference(inputs, out_dir, det, det_weights, rec, rec_weights, kie, kie_weights, device, batch_size):
|
| 38 |
+
init_args, call_args = parse_args()
|
| 39 |
+
inputs = np.array(inputs)
|
| 40 |
+
img_path = "demo_text_ocr.jpg"
|
| 41 |
+
save_image(inputs, img_path)
|
| 42 |
+
if det is not None and rec is not None:
|
| 43 |
+
init_args['det'] = det
|
| 44 |
+
init_args['det_weights'] = None
|
| 45 |
+
init_args['rec'] = rec
|
| 46 |
+
init_args['rec_weights'] = None
|
| 47 |
+
elif det_weights is not None and rec_weights is not None:
|
| 48 |
+
init_args['det'] = None
|
| 49 |
+
init_args['det_weights'] = det_weights
|
| 50 |
+
init_args['rec'] = None
|
| 51 |
+
init_args['rec_weights'] = rec_weights
|
| 52 |
+
if kie is not None:
|
| 53 |
+
init_args['kie'] = kie
|
| 54 |
+
init_args['kie_weights'] = None
|
| 55 |
+
if kie_weights is not None:
|
| 56 |
+
init_args['kie'] = None
|
| 57 |
+
init_args['kie_weights'] = kie_weights
|
| 58 |
+
|
| 59 |
+
call_args['inputs'] = img_path
|
| 60 |
+
call_args['out_dir'] = out_dir
|
| 61 |
+
call_args['batch_size'] = int(batch_size)
|
| 62 |
+
call_args['show'] = False
|
| 63 |
+
call_args['save_pred'] = True
|
| 64 |
+
call_args['save_vis'] = True
|
| 65 |
+
init_args['device'] = device
|
| 66 |
+
print("init_args", init_args)
|
| 67 |
+
print("call_args", call_args)
|
| 68 |
+
ocr = MMOCRInferencer(**init_args)
|
| 69 |
+
ocr(**call_args)
|
| 70 |
+
save_vis_dir = './results/vis/'
|
| 71 |
+
save_pred_dir = './results/preds/'
|
| 72 |
+
img_out = PIL.Image.open(os.path.join(save_vis_dir, img_path))
|
| 73 |
+
json_out = json.load(open(os.path.join(save_pred_dir, img_path.replace('.jpg', '.json'))))
|
| 74 |
+
return img_out, json_out
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def download_test_image():
|
| 78 |
+
# Images
|
| 79 |
+
torch.hub.download_url_to_file(
|
| 80 |
+
'https://user-images.githubusercontent.com/59380685/266821429-9a897c0a-5b02-4260-a65b-3514b758f6b6.jpg',
|
| 81 |
+
'demo_densetext_det.jpg')
|
| 82 |
+
torch.hub.download_url_to_file(
|
| 83 |
+
'https://user-images.githubusercontent.com/59380685/266821432-17bb0646-a3e9-451e-9b4d-6e41ce4c3f0c.jpg',
|
| 84 |
+
'demo_text_recog.jpg')
|
| 85 |
+
torch.hub.download_url_to_file(
|
| 86 |
+
'https://user-images.githubusercontent.com/59380685/266821434-fe0d4d18-f3e2-4acf-baf5-0d2e318f0b09.jpg',
|
| 87 |
+
'demo_text_ocr.jpg')
|
| 88 |
+
torch.hub.download_url_to_file(
|
| 89 |
+
'https://user-images.githubusercontent.com/59380685/266821435-5d7af2b4-cb84-4355-91cb-37d90e91aa30.jpg',
|
| 90 |
+
'demo_text_det.jpg')
|
| 91 |
+
torch.hub.download_url_to_file(
|
| 92 |
+
'https://user-images.githubusercontent.com/59380685/266821436-4790c6c1-2da5-45c7-b837-04eeea0d7264.jpeg',
|
| 93 |
+
'demo_kie.jpg')
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def parse_args():
|
| 97 |
+
parser = ArgumentParser()
|
| 98 |
+
parser.add_argument(
|
| 99 |
+
'--inputs', type=str, help='Input image file or folder path.')
|
| 100 |
+
parser.add_argument(
|
| 101 |
+
'--out-dir',
|
| 102 |
+
type=str,
|
| 103 |
+
default='./results/',
|
| 104 |
+
help='Output directory of results.')
|
| 105 |
+
parser.add_argument(
|
| 106 |
+
'--det',
|
| 107 |
+
type=str,
|
| 108 |
+
default=None,
|
| 109 |
+
help='Pretrained text detection algorithm. It\'s the path to the '
|
| 110 |
+
'config file or the model name defined in metafile.')
|
| 111 |
+
parser.add_argument(
|
| 112 |
+
'--det-weights',
|
| 113 |
+
type=str,
|
| 114 |
+
default=None,
|
| 115 |
+
help='Path to the custom checkpoint file of the selected det model. '
|
| 116 |
+
'If it is not specified and "det" is a model name of metafile, the '
|
| 117 |
+
'weights will be loaded from metafile.')
|
| 118 |
+
parser.add_argument(
|
| 119 |
+
'--rec',
|
| 120 |
+
type=str,
|
| 121 |
+
default=None,
|
| 122 |
+
help='Pretrained text recognition algorithm. It\'s the path to the '
|
| 123 |
+
'config file or the model name defined in metafile.')
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
'--rec-weights',
|
| 126 |
+
type=str,
|
| 127 |
+
default=None,
|
| 128 |
+
help='Path to the custom checkpoint file of the selected recog model. '
|
| 129 |
+
'If it is not specified and "rec" is a model name of metafile, the '
|
| 130 |
+
'weights will be loaded from metafile.')
|
| 131 |
+
parser.add_argument(
|
| 132 |
+
'--kie',
|
| 133 |
+
type=str,
|
| 134 |
+
default=None,
|
| 135 |
+
help='Pretrained key information extraction algorithm. It\'s the path'
|
| 136 |
+
'to the config file or the model name defined in metafile.')
|
| 137 |
+
parser.add_argument(
|
| 138 |
+
'--kie-weights',
|
| 139 |
+
type=str,
|
| 140 |
+
default=None,
|
| 141 |
+
help='Path to the custom checkpoint file of the selected kie model. '
|
| 142 |
+
'If it is not specified and "kie" is a model name of metafile, the '
|
| 143 |
+
'weights will be loaded from metafile.')
|
| 144 |
+
parser.add_argument(
|
| 145 |
+
'--device',
|
| 146 |
+
type=str,
|
| 147 |
+
default=None,
|
| 148 |
+
help='Device used for inference. '
|
| 149 |
+
'If not specified, the available device will be automatically used.')
|
| 150 |
+
parser.add_argument(
|
| 151 |
+
'--batch-size', type=int, default=1, help='Inference batch size.')
|
| 152 |
+
parser.add_argument(
|
| 153 |
+
'--show',
|
| 154 |
+
action='store_true',
|
| 155 |
+
help='Display the image in a popup window.')
|
| 156 |
+
parser.add_argument(
|
| 157 |
+
'--print-result',
|
| 158 |
+
action='store_true',
|
| 159 |
+
help='Whether to print the results.')
|
| 160 |
+
parser.add_argument(
|
| 161 |
+
'--save_pred',
|
| 162 |
+
action='store_true',
|
| 163 |
+
help='Save the inference results to out_dir.')
|
| 164 |
+
parser.add_argument(
|
| 165 |
+
'--save_vis',
|
| 166 |
+
action='store_true',
|
| 167 |
+
help='Save the visualization results to out_dir.')
|
| 168 |
+
|
| 169 |
+
call_args = vars(parser.parse_args())
|
| 170 |
+
|
| 171 |
+
init_kws = [
|
| 172 |
+
'det', 'det_weights', 'rec', 'rec_weights', 'kie', 'kie_weights', 'device'
|
| 173 |
+
]
|
| 174 |
+
init_args = {}
|
| 175 |
+
for init_kw in init_kws:
|
| 176 |
+
init_args[init_kw] = call_args.pop(init_kw)
|
| 177 |
+
|
| 178 |
+
return init_args, call_args
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
if __name__ == '__main__':
|
| 182 |
+
# Define Gradio input and output types
|
| 183 |
+
input_image = gr.inputs.Image(type="pil", label="Input Image")
|
| 184 |
+
out_dir = gr.inputs.Textbox(default="results")
|
| 185 |
+
det = gr.inputs.Dropdown(label="Text Detection Model", choices=[m for m in textdet_model_list], default='DBNet')
|
| 186 |
+
det_weights = gr.inputs.Textbox(default=None)
|
| 187 |
+
rec = gr.inputs.Dropdown(label="Text Recognition Model", choices=[m for m in textrec_model_list], default='CRNN')
|
| 188 |
+
rec_weights = gr.inputs.Textbox(default=None)
|
| 189 |
+
kie = gr.inputs.Dropdown(label="Key Information Extraction Model", choices=[m for m in textkie_model_list],
|
| 190 |
+
default='SDMGR')
|
| 191 |
+
kie_weights = gr.inputs.Textbox(default=None)
|
| 192 |
+
device = gr.inputs.Radio(choices=["cpu", "cuda"], label="Device used for inference", default="cpu")
|
| 193 |
+
batch_size = gr.inputs.Number(default=1, label="Inference batch size")
|
| 194 |
+
output_image = gr.outputs.Image(type="pil", label="Output Image")
|
| 195 |
+
output_json = gr.outputs.Textbox()
|
| 196 |
+
download_test_image()
|
| 197 |
+
examples = [["demo_text_ocr.jpg", "results", "DBNet", None, "CRNN", None, "SDMGR", None, "cpu", 1],
|
| 198 |
+
["demo_text_det.jpg", "results", "FCENet", None, "ASTER", None, "SDMGR", None, "cpu", 1],
|
| 199 |
+
["demo_text_recog.jpg", "results", "PANet", None, "MASTER", None, "SDMGR", None, "cpu", 1],
|
| 200 |
+
["demo_densetext_det.jpg", "results", "PSENet", None, "CRNN", None, "SDMGR", None, "cpu", 1],
|
| 201 |
+
["demo_kie.jpg", "results", "TextSnake", None, "RobustScanner", None, "SDMGR", None, "cpu", 1]
|
| 202 |
+
]
|
| 203 |
+
|
| 204 |
+
title = "MMOCR web demo"
|
| 205 |
+
description = "<div align='center'><img src='https://raw.githubusercontent.com/open-mmlab/mmocr/main/resources/mmocr-logo.png' width='450''/><div>" \
|
| 206 |
+
"<p style='text-align: center'><a href='https://github.com/open-mmlab/mmocr'>MMOCR</a> MMOCR 是基于 PyTorch 和 mmdetection 的开源工具箱,专注于文本检测,文本识别以及相应的下游任务,如关键信息提取。 它是 OpenMMLab 项目的一部分。" \
|
| 207 |
+
"OpenMMLab Text Detection, Recognition and Understanding Toolbox.</p>"
|
| 208 |
+
article = "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmocr'>MMOCR</a></p>" \
|
| 209 |
+
"<p style='text-align: center'><a href='https://github.com/isLinXu'>gradio build by gatilin</a></a></p>"
|
| 210 |
+
|
| 211 |
+
# Create Gradio interface
|
| 212 |
+
iface = gr.Interface(
|
| 213 |
+
fn=ocr_inference,
|
| 214 |
+
inputs=[
|
| 215 |
+
input_image, out_dir, det, det_weights, rec, rec_weights,
|
| 216 |
+
kie, kie_weights, device, batch_size
|
| 217 |
+
],
|
| 218 |
+
outputs=[output_image, output_json], examples=examples,
|
| 219 |
+
title=title, description=description, article=article,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Launch Gradio interface
|
| 223 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
wget~=3.2
|
| 2 |
+
opencv-python~=4.6.0.66
|
| 3 |
+
numpy~=1.23.0
|
| 4 |
+
torch~=1.13.1
|
| 5 |
+
torchvision~=0.14.1
|
| 6 |
+
pillow~=9.4.0
|
| 7 |
+
gradio~=3.42.0
|
| 8 |
+
ultralytics~=8.0.169
|
| 9 |
+
pyyaml~=6.0
|
| 10 |
+
wandb~=0.13.11
|
| 11 |
+
tqdm~=4.65.0
|
| 12 |
+
matplotlib~=3.7.1
|
| 13 |
+
pandas~=2.0.0
|
| 14 |
+
seaborn~=0.12.2
|
| 15 |
+
requests~=2.31.0
|
| 16 |
+
psutil~=5.9.4
|
| 17 |
+
thop~=0.1.1-2209072238
|
| 18 |
+
timm~=0.9.2
|
| 19 |
+
super-gradients~=3.2.0
|
| 20 |
+
openmim
|