import gradio import transformers import torch tokenizer = AutoTokenizer.from_pretrained('t5-small-finetuned-wikisql-with-cols') model = T5ForConditionalGeneration.from_pretrained('t5-small-finetuned-wikisql-with-cols') def translate_to_sql(text): inputs = tokenizer(text, padding='longest', max_length=64, return_tensors='pt') input_ids = inputs.input_ids attention_mask = inputs.attention_mask output = model.generate(input_ids, attention_mask=attention_mask, max_length=64) return tokenizer.decode(output[0], skip_special_tokens=True) #Input example: 'translate to SQL: When was Olympic games held in Rome? table ID: ID, city, year, cost, attendees' gradio_interface = gradio.Interface( fn = translate_to_sql, inputs = "text", outputs = "text" ) gradio_interface.launch()