Spaces:
Runtime error
Runtime error
Commit
·
2673600
1
Parent(s):
dac55f5
added dataloader
Browse files- enhance_me/__init__.py +0 -0
- enhance_me/augmentation.py +51 -0
- enhance_me/commons.py +9 -0
- enhance_me/mirnet/__init__.py +0 -0
- enhance_me/mirnet/dataloader.py +31 -0
- notebooks/.gitkeep +0 -0
enhance_me/__init__.py
ADDED
|
File without changes
|
enhance_me/augmentation.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class AugmentationFactory:
|
| 5 |
+
def __init__(self, image_size) -> None:
|
| 6 |
+
self.image_size = image_size
|
| 7 |
+
|
| 8 |
+
def random_crop(self, input_image, enhanced_image):
|
| 9 |
+
input_image_shape = tf.shape(input_image)[:2]
|
| 10 |
+
low_w = tf.random.uniform(
|
| 11 |
+
shape=(), maxval=input_image_shape[1] - self.image_size + 1, dtype=tf.int32
|
| 12 |
+
)
|
| 13 |
+
low_h = tf.random.uniform(
|
| 14 |
+
shape=(), maxval=input_image_shape[0] - self.image_size + 1, dtype=tf.int32
|
| 15 |
+
)
|
| 16 |
+
enhanced_w = low_w
|
| 17 |
+
enhanced_h = low_h
|
| 18 |
+
input_image_cropped = input_image[
|
| 19 |
+
low_h : low_h + self.image_size, low_w : low_w + self.image_size
|
| 20 |
+
]
|
| 21 |
+
enhanced_image_cropped = enhanced_image[
|
| 22 |
+
enhanced_h : enhanced_h + self.image_size,
|
| 23 |
+
enhanced_w : enhanced_w + self.image_size,
|
| 24 |
+
]
|
| 25 |
+
return input_image_cropped, enhanced_image_cropped
|
| 26 |
+
|
| 27 |
+
def random_horizontal_flip(sefl, input_image, enhanced_image):
|
| 28 |
+
return tf.cond(
|
| 29 |
+
tf.random.uniform(shape=(), maxval=1) < 0.5,
|
| 30 |
+
lambda: (input_image, enhanced_image),
|
| 31 |
+
lambda: (
|
| 32 |
+
tf.image.flip_left_right(input_image),
|
| 33 |
+
tf.image.flip_left_right(enhanced_image),
|
| 34 |
+
),
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
def random_vertical_flip(self, input_image, enhanced_image):
|
| 38 |
+
return tf.cond(
|
| 39 |
+
tf.random.uniform(shape=(), maxval=1) < 0.5,
|
| 40 |
+
lambda: (input_image, enhanced_image),
|
| 41 |
+
lambda: (
|
| 42 |
+
tf.image.flip_up_down(input_image),
|
| 43 |
+
tf.image.flip_up_down(enhanced_image),
|
| 44 |
+
),
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def random_rotate(input_image, enhanced_image):
|
| 48 |
+
condition = tf.random.uniform(shape=(), maxval=4, dtype=tf.int32)
|
| 49 |
+
return tf.image.rot90(input_image, condition), tf.image.rot90(
|
| 50 |
+
enhanced_image, condition
|
| 51 |
+
)
|
enhance_me/commons.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def read_image(image_path):
|
| 5 |
+
image = tf.io.read_file(image_path)
|
| 6 |
+
image = tf.image.decode_png(image, channels=3)
|
| 7 |
+
image.set_shape([None, None, 3])
|
| 8 |
+
image = tf.cast(image, dtype=tf.float32) / 255.0
|
| 9 |
+
return image
|
enhance_me/mirnet/__init__.py
ADDED
|
File without changes
|
enhance_me/mirnet/dataloader.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
from ..commons import read_image
|
| 5 |
+
from ..augmentation import AugmentationFactory
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class LowLightDataset:
|
| 9 |
+
def __init__(self, image_size: int = 256) -> None:
|
| 10 |
+
self.augmentation_factory = AugmentationFactory(image_size=image_size)
|
| 11 |
+
|
| 12 |
+
def load_data(self, low_light_image_path, enhanced_image_path):
|
| 13 |
+
low_light_image = read_image(low_light_image_path)
|
| 14 |
+
enhanced_image = read_image(enhanced_image_path)
|
| 15 |
+
low_light_image, enhanced_image = self.augmentation_factory.random_crop(
|
| 16 |
+
low_light_image, enhanced_image
|
| 17 |
+
)
|
| 18 |
+
return low_light_image, enhanced_image
|
| 19 |
+
|
| 20 |
+
def get_dataset(
|
| 21 |
+
self,
|
| 22 |
+
low_light_images: List[str],
|
| 23 |
+
enhanced_images: List[str],
|
| 24 |
+
batch_size: int = 16,
|
| 25 |
+
):
|
| 26 |
+
dataset = tf.data.Dataset.from_tensor_slices(
|
| 27 |
+
(low_light_images, enhanced_images)
|
| 28 |
+
)
|
| 29 |
+
dataset = dataset.map(self.load_data, num_parallel_calls=tf.data.AUTOTUNE)
|
| 30 |
+
dataset = dataset.batch(batch_size, drop_remainder=True)
|
| 31 |
+
return dataset
|
notebooks/.gitkeep
ADDED
|
File without changes
|