Spaces:
Runtime error
Runtime error
| import os | |
| from typing import Optional | |
| import safetensors | |
| import safetensors.torch | |
| import torch | |
| import torch.nn.functional as F | |
| import weave | |
| from transformers import ( | |
| AutoModel, | |
| AutoTokenizer, | |
| BertPreTrainedModel, | |
| PreTrainedTokenizerFast, | |
| ) | |
| from ..utils import get_torch_backend, get_wandb_artifact | |
| from .common import SimilarityMetric, argsort_scores, save_vector_index | |
| class MedCPTRetriever(weave.Model): | |
| """ | |
| A class to retrieve relevant text chunks using MedCPT models. | |
| This class provides methods to index a dataset of text chunks and retrieve the most relevant | |
| chunks for a given query using MedCPT models. It uses separate models for encoding queries | |
| and articles, and supports both cosine similarity and Euclidean distance as similarity metrics. | |
| Args: | |
| query_encoder_model_name (str): The name of the model used for encoding queries. | |
| article_encoder_model_name (str): The name of the model used for encoding articles. | |
| chunk_size (Optional[int]): The maximum length of text chunks. | |
| vector_index (Optional[torch.Tensor]): The vector index of encoded text chunks. | |
| chunk_dataset (Optional[list[dict]]): The dataset of text chunks. | |
| """ | |
| query_encoder_model_name: str | |
| article_encoder_model_name: str | |
| chunk_size: Optional[int] | |
| _chunk_dataset: Optional[list[dict]] | |
| _query_tokenizer: PreTrainedTokenizerFast | |
| _article_tokenizer: PreTrainedTokenizerFast | |
| _query_encoder_model: BertPreTrainedModel | |
| _article_encoder_model: BertPreTrainedModel | |
| _vector_index: Optional[torch.Tensor] | |
| def __init__( | |
| self, | |
| query_encoder_model_name: str, | |
| article_encoder_model_name: str, | |
| chunk_size: Optional[int] = None, | |
| vector_index: Optional[torch.Tensor] = None, | |
| chunk_dataset: Optional[list[dict]] = None, | |
| ): | |
| super().__init__( | |
| query_encoder_model_name=query_encoder_model_name, | |
| article_encoder_model_name=article_encoder_model_name, | |
| chunk_size=chunk_size, | |
| ) | |
| self._query_tokenizer = AutoTokenizer.from_pretrained( | |
| self.query_encoder_model_name | |
| ) | |
| self._article_tokenizer = AutoTokenizer.from_pretrained( | |
| self.article_encoder_model_name | |
| ) | |
| self._query_encoder_model = AutoModel.from_pretrained( | |
| self.query_encoder_model_name | |
| ) | |
| self._article_encoder_model = AutoModel.from_pretrained( | |
| self.article_encoder_model_name | |
| ) | |
| self._chunk_dataset = chunk_dataset | |
| self._vector_index = vector_index | |
| def index(self, chunk_dataset_name: str, index_name: Optional[str] = None): | |
| """ | |
| Indexes a dataset of text chunks and optionally saves the vector index. | |
| This method retrieves a dataset of text chunks from a Weave reference, encodes the text | |
| chunks using the article encoder model, and stores the resulting vector index. If an | |
| index name is provided, the vector index is saved to a file using the `save_vector_index` | |
| function. | |
| !!! example "Example Usage" | |
| ```python | |
| import weave | |
| from dotenv import load_dotenv | |
| import wandb | |
| from medrag_multi_modal.retrieval import MedCPTRetriever | |
| load_dotenv() | |
| weave.init(project_name="ml-colabs/medrag-multi-modal") | |
| wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="medcpt-index") | |
| retriever = MedCPTRetriever( | |
| query_encoder_model_name="ncbi/MedCPT-Query-Encoder", | |
| article_encoder_model_name="ncbi/MedCPT-Article-Encoder", | |
| ) | |
| retriever.index( | |
| chunk_dataset_name="grays-anatomy-chunks:v0", | |
| index_name="grays-anatomy-medcpt", | |
| ) | |
| ``` | |
| Args: | |
| chunk_dataset_name (str): The name of the dataset containing text chunks to be indexed. | |
| index_name (Optional[str]): The name to use when saving the vector index. If not provided, | |
| the vector index is not saved. | |
| """ | |
| self._chunk_dataset = weave.ref(chunk_dataset_name).get().rows | |
| corpus = [row["text"] for row in self._chunk_dataset] | |
| with torch.no_grad(): | |
| encoded = self._article_tokenizer( | |
| corpus, | |
| truncation=True, | |
| padding=True, | |
| return_tensors="pt", | |
| max_length=self.chunk_size, | |
| ) | |
| vector_index = ( | |
| self._article_encoder_model(**encoded) | |
| .last_hidden_state[:, 0, :] | |
| .contiguous() | |
| ) | |
| self._vector_index = vector_index | |
| if index_name: | |
| save_vector_index( | |
| self._vector_index, | |
| "medcpt-index", | |
| index_name, | |
| { | |
| "query_encoder_model_name": self.query_encoder_model_name, | |
| "article_encoder_model_name": self.article_encoder_model_name, | |
| "chunk_size": self.chunk_size, | |
| }, | |
| ) | |
| def from_wandb_artifact(cls, chunk_dataset_name: str, index_artifact_address: str): | |
| """ | |
| Initializes an instance of the class from a Weave artifact. | |
| This method retrieves a precomputed vector index and its associated metadata from a Weave artifact | |
| stored in Weights & Biases (wandb). It then loads the vector index into memory and initializes an | |
| instance of the class with the retrieved model names, vector index, and chunk dataset. | |
| !!! example "Example Usage" | |
| ```python | |
| import weave | |
| from dotenv import load_dotenv | |
| import wandb | |
| from medrag_multi_modal.retrieval import MedCPTRetriever | |
| load_dotenv() | |
| weave.init(project_name="ml-colabs/medrag-multi-modal") | |
| retriever = MedCPTRetriever.from_wandb_artifact( | |
| chunk_dataset_name="grays-anatomy-chunks:v0", | |
| index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-medcpt:v0", | |
| ) | |
| ``` | |
| Args: | |
| chunk_dataset_name (str): The name of the dataset containing text chunks to be indexed. | |
| index_artifact_address (str): The address of the Weave artifact containing the precomputed vector index. | |
| Returns: | |
| An instance of the class initialized with the retrieved model name, vector index, and chunk dataset. | |
| """ | |
| artifact_dir, metadata = get_wandb_artifact( | |
| index_artifact_address, "medcpt-index", get_metadata=True | |
| ) | |
| with safetensors.torch.safe_open( | |
| os.path.join(artifact_dir, "vector_index.safetensors"), framework="pt" | |
| ) as f: | |
| vector_index = f.get_tensor("vector_index") | |
| device = torch.device(get_torch_backend()) | |
| vector_index = vector_index.to(device) | |
| chunk_dataset = [dict(row) for row in weave.ref(chunk_dataset_name).get().rows] | |
| return cls( | |
| query_encoder_model_name=metadata["query_encoder_model_name"], | |
| article_encoder_model_name=metadata["article_encoder_model_name"], | |
| chunk_size=metadata["chunk_size"], | |
| vector_index=vector_index, | |
| chunk_dataset=chunk_dataset, | |
| ) | |
| def retrieve( | |
| self, | |
| query: str, | |
| top_k: int = 2, | |
| metric: SimilarityMetric = SimilarityMetric.COSINE, | |
| ): | |
| """ | |
| Retrieves the top-k most relevant chunks for a given query using the specified similarity metric. | |
| This method encodes the input query into an embedding and computes similarity scores between | |
| the query embedding and the precomputed vector index. The similarity metric can be either | |
| cosine similarity or Euclidean distance. The top-k chunks with the highest similarity scores | |
| are returned as a list of dictionaries, each containing a chunk and its corresponding score. | |
| !!! example "Example Usage" | |
| ```python | |
| import weave | |
| from dotenv import load_dotenv | |
| import wandb | |
| from medrag_multi_modal.retrieval import MedCPTRetriever | |
| load_dotenv() | |
| weave.init(project_name="ml-colabs/medrag-multi-modal") | |
| retriever = MedCPTRetriever.from_wandb_artifact( | |
| chunk_dataset_name="grays-anatomy-chunks:v0", | |
| index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-medcpt:v0", | |
| ) | |
| retriever.retrieve(query="What are Ribosomes?") | |
| ``` | |
| Args: | |
| query (str): The input query string to search for relevant chunks. | |
| top_k (int, optional): The number of top relevant chunks to retrieve. Defaults to 2. | |
| metric (SimilarityMetric, optional): The similarity metric to use for scoring. Defaults to cosine similarity. | |
| Returns: | |
| list: A list of dictionaries, each containing a retrieved chunk and its relevance score. | |
| """ | |
| query = [query] | |
| device = torch.device(get_torch_backend()) | |
| with torch.no_grad(): | |
| encoded = self._query_tokenizer( | |
| query, | |
| truncation=True, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| query_embedding = self._query_encoder_model(**encoded).last_hidden_state[ | |
| :, 0, : | |
| ] | |
| query_embedding = query_embedding.to(device) | |
| if metric == SimilarityMetric.EUCLIDEAN: | |
| scores = torch.squeeze(query_embedding @ self._vector_index.T) | |
| else: | |
| scores = F.cosine_similarity(query_embedding, self._vector_index) | |
| scores = scores.cpu().numpy().tolist() | |
| scores = argsort_scores(scores, descending=True)[:top_k] | |
| retrieved_chunks = [] | |
| for score in scores: | |
| retrieved_chunks.append( | |
| { | |
| "chunk": self._chunk_dataset[score["original_index"]], | |
| "score": score["item"], | |
| } | |
| ) | |
| return retrieved_chunks | |