Spaces:
Runtime error
Runtime error
Commit
·
b82a487
1
Parent(s):
c063304
add: ContrieverRetriever
Browse files
.gitignore
CHANGED
|
@@ -19,4 +19,5 @@ cursor_prompt.txt
|
|
| 19 |
test.py
|
| 20 |
uv.lock
|
| 21 |
grays-anatomy-bm25s/
|
| 22 |
-
prompt**.txt
|
|
|
|
|
|
| 19 |
test.py
|
| 20 |
uv.lock
|
| 21 |
grays-anatomy-bm25s/
|
| 22 |
+
prompt**.txt
|
| 23 |
+
**.safetensors
|
docs/retreival/contriever.md
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Contriever Retrieval
|
| 2 |
+
|
| 3 |
+
::: medrag_multi_modal.retrieval.contriever_retrieval
|
medrag_multi_modal/retrieval/__init__.py
CHANGED
|
@@ -1,4 +1,10 @@
|
|
| 1 |
from .bm25s_retrieval import BM25sRetriever
|
| 2 |
from .colpali_retrieval import CalPaliRetriever
|
|
|
|
| 3 |
|
| 4 |
-
__all__ = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from .bm25s_retrieval import BM25sRetriever
|
| 2 |
from .colpali_retrieval import CalPaliRetriever
|
| 3 |
+
from .contriever_retrieval import ContrieverRetriever, SimilarityMetric
|
| 4 |
|
| 5 |
+
__all__ = [
|
| 6 |
+
"CalPaliRetriever",
|
| 7 |
+
"BM25sRetriever",
|
| 8 |
+
"ContrieverRetriever",
|
| 9 |
+
"SimilarityMetric",
|
| 10 |
+
]
|
medrag_multi_modal/retrieval/common.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from enum import Enum
|
| 2 |
+
|
| 3 |
+
import wandb
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class SimilarityMetric(Enum):
|
| 7 |
+
COSINE = "cosine"
|
| 8 |
+
EUCLIDEAN = "euclidean"
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def mean_pooling(token_embeddings, mask):
|
| 12 |
+
token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.0)
|
| 13 |
+
sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None]
|
| 14 |
+
return sentence_embeddings
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_wandb_artifact(artifact_address: str, artifact_type: str):
|
| 18 |
+
if wandb.run:
|
| 19 |
+
artifact = wandb.run.use_artifact(artifact_address, type=artifact_type)
|
| 20 |
+
artifact_dir = artifact.download()
|
| 21 |
+
else:
|
| 22 |
+
api = wandb.Api()
|
| 23 |
+
artifact = api.artifact(artifact_address)
|
| 24 |
+
artifact_dir = artifact.download()
|
| 25 |
+
metadata = artifact.metadata
|
| 26 |
+
return artifact_dir, metadata
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def argsort_scores(scores: list[float], descending: bool = False):
|
| 30 |
+
return [
|
| 31 |
+
{"item": item, "original_index": idx}
|
| 32 |
+
for idx, item in sorted(
|
| 33 |
+
list(enumerate(scores)), key=lambda x: x[1], reverse=descending
|
| 34 |
+
)
|
| 35 |
+
]
|
medrag_multi_modal/retrieval/contriever_retrieval.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
import safetensors
|
| 5 |
+
import safetensors.torch
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import weave
|
| 9 |
+
from transformers import (
|
| 10 |
+
AutoModel,
|
| 11 |
+
AutoTokenizer,
|
| 12 |
+
BertPreTrainedModel,
|
| 13 |
+
PreTrainedTokenizerFast,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
import wandb
|
| 17 |
+
|
| 18 |
+
from .common import SimilarityMetric, argsort_scores, get_wandb_artifact, mean_pooling
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ContrieverRetriever(weave.Model):
|
| 22 |
+
"""
|
| 23 |
+
`ContrieverRetriever` is a class to perform retrieval tasks using the Contriever model.
|
| 24 |
+
|
| 25 |
+
It provides methods to encode text data into embeddings, index a dataset of text chunks,
|
| 26 |
+
and retrieve the most relevant chunks for a given query based on similarity metrics.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
model_name (str): The name of the pre-trained model to use for encoding.
|
| 30 |
+
vector_index (Optional[torch.Tensor]): The tensor containing the vector representations
|
| 31 |
+
of the indexed chunks.
|
| 32 |
+
chunk_dataset (Optional[list[dict]]): The weave dataset of text chunks to be indexed.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
model_name: str
|
| 36 |
+
_chunk_dataset: Optional[list[dict]]
|
| 37 |
+
_tokenizer: PreTrainedTokenizerFast
|
| 38 |
+
_model: BertPreTrainedModel
|
| 39 |
+
_vector_index: Optional[torch.Tensor]
|
| 40 |
+
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
model_name: str = "facebook/contriever",
|
| 44 |
+
vector_index: Optional[torch.Tensor] = None,
|
| 45 |
+
chunk_dataset: Optional[list[dict]] = None,
|
| 46 |
+
):
|
| 47 |
+
super().__init__(model_name=model_name)
|
| 48 |
+
self._tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 49 |
+
self._model = AutoModel.from_pretrained(self.model_name)
|
| 50 |
+
self._vector_index = vector_index
|
| 51 |
+
self._chunk_dataset = chunk_dataset
|
| 52 |
+
|
| 53 |
+
def encode(self, corpus: list[str]) -> torch.Tensor:
|
| 54 |
+
inputs = self._tokenizer(
|
| 55 |
+
corpus, padding=True, truncation=True, return_tensors="pt"
|
| 56 |
+
)
|
| 57 |
+
outputs = self._model(**inputs)
|
| 58 |
+
return mean_pooling(outputs[0], inputs["attention_mask"])
|
| 59 |
+
|
| 60 |
+
def index(self, chunk_dataset_name: str, index_name: Optional[str] = None):
|
| 61 |
+
"""
|
| 62 |
+
Indexes a dataset of text chunks and optionally saves the vector index to a file.
|
| 63 |
+
|
| 64 |
+
This method retrieves a dataset of text chunks from a Weave reference, encodes the
|
| 65 |
+
text chunks into vector representations using the Contriever model, and stores the
|
| 66 |
+
resulting vector index. If an index name is provided, the vector index is saved to
|
| 67 |
+
a file in the safetensors format. Additionally, if a Weave run is active, the vector
|
| 68 |
+
index file is logged as an artifact to Weave.
|
| 69 |
+
|
| 70 |
+
!!! example "Example Usage"
|
| 71 |
+
```python
|
| 72 |
+
import weave
|
| 73 |
+
from dotenv import load_dotenv
|
| 74 |
+
|
| 75 |
+
import wandb
|
| 76 |
+
from medrag_multi_modal.retrieval import ContrieverRetriever, SimilarityMetric
|
| 77 |
+
|
| 78 |
+
load_dotenv()
|
| 79 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
| 80 |
+
wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="contriever-index")
|
| 81 |
+
retriever = ContrieverRetriever(model_name="facebook/contriever")
|
| 82 |
+
retriever.index(chunk_dataset_name="grays-anatomy-chunks:v0", index_name="grays-anatomy-contriever")
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks
|
| 87 |
+
to be indexed.
|
| 88 |
+
index_name (Optional[str]): The name of the index artifact to be saved. If provided,
|
| 89 |
+
the vector index is saved to a file and logged as an artifact to Weave.
|
| 90 |
+
"""
|
| 91 |
+
self._chunk_dataset = weave.ref(chunk_dataset_name).get().rows
|
| 92 |
+
corpus = [row["text"] for row in self._chunk_dataset]
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
vector_index = self.encode(corpus)
|
| 95 |
+
self._vector_index = vector_index
|
| 96 |
+
if index_name:
|
| 97 |
+
safetensors.torch.save_file(
|
| 98 |
+
{"vector_index": vector_index.cpu()}, "vector_index.safetensors"
|
| 99 |
+
)
|
| 100 |
+
if wandb.run:
|
| 101 |
+
artifact = wandb.Artifact(
|
| 102 |
+
name=index_name,
|
| 103 |
+
type="contriever-index",
|
| 104 |
+
metadata={"model_name": self.model_name},
|
| 105 |
+
)
|
| 106 |
+
artifact.add_file("vector_index.safetensors")
|
| 107 |
+
artifact.save()
|
| 108 |
+
|
| 109 |
+
@classmethod
|
| 110 |
+
def from_wandb_artifact(cls, chunk_dataset_name: str, index_artifact_address: str):
|
| 111 |
+
"""
|
| 112 |
+
Creates an instance of the class from a Weave artifact.
|
| 113 |
+
|
| 114 |
+
This method retrieves a vector index and metadata from a Weave artifact stored in
|
| 115 |
+
Weights & Biases (wandb). It also retrieves a dataset of text chunks from a Weave
|
| 116 |
+
reference. The vector index is loaded from a safetensors file and moved to the
|
| 117 |
+
appropriate device (CPU or GPU). The text chunks are converted into a list of
|
| 118 |
+
dictionaries. The method then returns an instance of the class initialized with
|
| 119 |
+
the retrieved model name, vector index, and chunk dataset.
|
| 120 |
+
|
| 121 |
+
!!! example "Example Usage"
|
| 122 |
+
```python
|
| 123 |
+
import weave
|
| 124 |
+
from dotenv import load_dotenv
|
| 125 |
+
|
| 126 |
+
from medrag_multi_modal.retrieval import ContrieverRetriever, SimilarityMetric
|
| 127 |
+
|
| 128 |
+
load_dotenv()
|
| 129 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
| 130 |
+
retriever = ContrieverRetriever.from_wandb_artifact(
|
| 131 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
| 132 |
+
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-contriever:v1",
|
| 133 |
+
)
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
Args:
|
| 137 |
+
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks.
|
| 138 |
+
index_artifact_address (str): The address of the Weave artifact containing the
|
| 139 |
+
vector index.
|
| 140 |
+
|
| 141 |
+
Returns:
|
| 142 |
+
An instance of the class initialized with the retrieved model name, vector index,
|
| 143 |
+
and chunk dataset.
|
| 144 |
+
"""
|
| 145 |
+
artifact_dir, metadata = get_wandb_artifact(
|
| 146 |
+
index_artifact_address, "contriever-index"
|
| 147 |
+
)
|
| 148 |
+
with safetensors.torch.safe_open(
|
| 149 |
+
os.path.join(artifact_dir, "vector_index.safetensors"), framework="pt"
|
| 150 |
+
) as f:
|
| 151 |
+
vector_index = f.get_tensor("vector_index")
|
| 152 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 153 |
+
vector_index = vector_index.to(device)
|
| 154 |
+
chunk_dataset = [dict(row) for row in weave.ref(chunk_dataset_name).get().rows]
|
| 155 |
+
return cls(
|
| 156 |
+
model_name=metadata["model_name"],
|
| 157 |
+
vector_index=vector_index,
|
| 158 |
+
chunk_dataset=chunk_dataset,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
@weave.op()
|
| 162 |
+
def retrieve(
|
| 163 |
+
self,
|
| 164 |
+
query: str,
|
| 165 |
+
top_k: int = 2,
|
| 166 |
+
metric: SimilarityMetric = SimilarityMetric.COSINE,
|
| 167 |
+
):
|
| 168 |
+
"""
|
| 169 |
+
Retrieves the top-k most relevant chunks for a given query using the specified similarity metric.
|
| 170 |
+
|
| 171 |
+
This method encodes the input query into an embedding and computes similarity scores between
|
| 172 |
+
the query embedding and the precomputed vector index. The similarity metric can be either
|
| 173 |
+
cosine similarity or Euclidean distance. The top-k chunks with the highest similarity scores
|
| 174 |
+
are returned as a list of dictionaries, each containing a chunk and its corresponding score.
|
| 175 |
+
|
| 176 |
+
!!! example "Example Usage"
|
| 177 |
+
```python
|
| 178 |
+
import weave
|
| 179 |
+
from dotenv import load_dotenv
|
| 180 |
+
|
| 181 |
+
from medrag_multi_modal.retrieval import ContrieverRetriever, SimilarityMetric
|
| 182 |
+
|
| 183 |
+
load_dotenv()
|
| 184 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
| 185 |
+
retriever = ContrieverRetriever.from_wandb_artifact(
|
| 186 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
| 187 |
+
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-contriever:v1",
|
| 188 |
+
)
|
| 189 |
+
scores = retriever.retrieve(query="What are Ribosomes?", metric=SimilarityMetric.COSINE)
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
query (str): The input query string to search for relevant chunks.
|
| 194 |
+
top_k (int, optional): The number of top relevant chunks to retrieve. Defaults to 2.
|
| 195 |
+
metric (SimilarityMetric, optional): The similarity metric to use for scoring.
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
list: A list of dictionaries, each containing a retrieved chunk and its relevance score.
|
| 199 |
+
"""
|
| 200 |
+
query = [query]
|
| 201 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 202 |
+
with torch.no_grad():
|
| 203 |
+
query_embedding = self.encode(query).to(device)
|
| 204 |
+
if metric == SimilarityMetric.EUCLIDEAN:
|
| 205 |
+
scores = torch.squeeze(query_embedding @ self._vector_index.T)
|
| 206 |
+
else:
|
| 207 |
+
scores = F.cosine_similarity(query_embedding, self._vector_index)
|
| 208 |
+
scores = scores.cpu().numpy().tolist()
|
| 209 |
+
scores = argsort_scores(scores, descending=True)[:top_k]
|
| 210 |
+
retrieved_chunks = []
|
| 211 |
+
for score in scores:
|
| 212 |
+
retrieved_chunks.append(
|
| 213 |
+
{
|
| 214 |
+
"chunk": self._chunk_dataset[score["original_index"]],
|
| 215 |
+
"score": score["item"],
|
| 216 |
+
}
|
| 217 |
+
)
|
| 218 |
+
return retrieved_chunks
|
mkdocs.yml
CHANGED
|
@@ -74,5 +74,6 @@ nav:
|
|
| 74 |
- Retrieval:
|
| 75 |
- BM25-Sparse: 'retreival/bm25s.md'
|
| 76 |
- ColPali: 'retreival/colpali.md'
|
|
|
|
| 77 |
|
| 78 |
repo_url: https://github.com/soumik12345/medrag-multi-modal
|
|
|
|
| 74 |
- Retrieval:
|
| 75 |
- BM25-Sparse: 'retreival/bm25s.md'
|
| 76 |
- ColPali: 'retreival/colpali.md'
|
| 77 |
+
- Contriever: 'retreival/contriever.md'
|
| 78 |
|
| 79 |
repo_url: https://github.com/soumik12345/medrag-multi-modal
|