Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import os | |
| import subprocess | |
| import signal | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| import gradio as gr | |
| import tempfile | |
| from huggingface_hub import HfApi, ModelCard, whoami | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from pathlib import Path | |
| from textwrap import dedent | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| CONVERSION_SCRIPT = "convert_lora_to_gguf.py" | |
| def process_model(peft_model_id: str, base_model_id: str, q_method: str, private_repo, oauth_token: gr.OAuthToken | None): | |
| # validate the oauth token | |
| try: | |
| whoami(oauth_token.token) | |
| except Exception as e: | |
| raise gr.Error("You must be logged in to use GGUF-my-lora") | |
| model_name = peft_model_id.split('/')[-1] | |
| gguf_output_name = f"{model_name}-{q_method.lower()}.gguf" | |
| try: | |
| api = HfApi(token=oauth_token.token) | |
| dl_pattern = ["*.md", "*.json", "*.model"] | |
| pattern = ( | |
| "*.safetensors" | |
| if any( | |
| file.path.endswith(".safetensors") | |
| for file in api.list_repo_tree( | |
| repo_id=peft_model_id, | |
| recursive=True, | |
| ) | |
| ) | |
| else "*.bin" | |
| ) | |
| dl_pattern += [pattern] | |
| if not os.path.exists("downloads"): | |
| os.makedirs("downloads") | |
| if not os.path.exists("outputs"): | |
| os.makedirs("outputs") | |
| with tempfile.TemporaryDirectory(dir="outputs") as outputdir: | |
| gguf_output_path = Path(outputdir)/gguf_output_name | |
| readme_output_path = Path(outputdir)/"README.md" | |
| with tempfile.TemporaryDirectory(dir="downloads") as tmpdir: | |
| # Keep the model name as the dirname so the model name metadata is populated correctly | |
| local_dir = Path(tmpdir)/model_name | |
| print(local_dir) | |
| api.snapshot_download(repo_id=peft_model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) | |
| print("Model downloaded successfully!") | |
| print(f"Current working directory: {os.getcwd()}") | |
| print(f"Model directory contents: {os.listdir(local_dir)}") | |
| adapter_config_dir = local_dir/"adapter_config.json" | |
| if not os.path.exists(adapter_config_dir): | |
| raise Exception('adapter_config.json not found. Please ensure the selected repo is a PEFT LoRA model.<br/><br/>If you are converting a model (not a LoRA adapter), please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-repo" target="_blank" style="text-decoration:underline">GGUF-my-repo</a> instead.') | |
| cmd = [ | |
| "python", | |
| f"llama.cpp/{CONVERSION_SCRIPT}", | |
| local_dir, | |
| "--outtype", | |
| q_method.lower(), | |
| "--outfile", | |
| gguf_output_path, | |
| ] | |
| if base_model_id: | |
| cmd.extend(["--base-model-id", base_model_id]) | |
| print("cmd", cmd) | |
| result = subprocess.run(cmd, shell=False, capture_output=True) | |
| print(result) | |
| if result.returncode != 0: | |
| raise Exception(f"Error converting to GGUF {q_method}: {result.stderr}") | |
| print("Model converted to GGUF successfully!") | |
| print(f"Converted model path: {gguf_output_path}") | |
| # Create empty repo | |
| username = whoami(oauth_token.token)["name"] | |
| new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo) | |
| new_repo_id = new_repo_url.repo_id | |
| print("Repo created successfully!", new_repo_url) | |
| # Upload the GGUF model | |
| api.upload_file( | |
| path_or_fileobj=gguf_output_path, | |
| path_in_repo=gguf_output_name, | |
| repo_id=new_repo_id, | |
| ) | |
| print("Uploaded", gguf_output_name) | |
| try: | |
| card = ModelCard.load(peft_model_id, token=oauth_token.token) | |
| except: | |
| card = ModelCard("") | |
| if card.data.tags is None: | |
| card.data.tags = [] | |
| card.data.tags.append("llama-cpp") | |
| card.data.tags.append("gguf-my-lora") | |
| card.data.base_model = peft_model_id | |
| card.text = dedent( | |
| f""" | |
| # {new_repo_id} | |
| This LoRA adapter was converted to GGUF format from [`{peft_model_id}`](https://huggingface.co/{peft_model_id}) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. | |
| Refer to the [original adapter repository](https://huggingface.co/{peft_model_id}) for more details. | |
| ## Use with llama.cpp | |
| ```bash | |
| # with cli | |
| llama-cli -m base_model.gguf --lora {gguf_output_name} (...other args) | |
| # with server | |
| llama-server -m base_model.gguf --lora {gguf_output_name} (...other args) | |
| ``` | |
| To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md). | |
| """ | |
| ) | |
| card.save(readme_output_path) | |
| api.upload_file( | |
| path_or_fileobj=readme_output_path, | |
| path_in_repo="README.md", | |
| repo_id=new_repo_id, | |
| ) | |
| return ( | |
| f'<h1>β DONE</h1><br/><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>' | |
| ) | |
| except Exception as e: | |
| return (f"<h1>β ERROR</h1><br/><br/>{e}") | |
| css="""/* Custom CSS to allow scrolling */ | |
| .gradio-container {overflow-y: auto;} | |
| """ | |
| # Create Gradio interface | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("You must be logged in to use GGUF-my-lora.") | |
| gr.LoginButton(min_width=250) | |
| peft_model_id = HuggingfaceHubSearch( | |
| label="PEFT LoRA repository", | |
| placeholder="Search for repository on Huggingface", | |
| search_type="model", | |
| ) | |
| base_model_id = HuggingfaceHubSearch( | |
| label="Base model repository (Optional)", | |
| placeholder="If empty, we will use the value from adapter_config.json", | |
| search_type="model", | |
| ) | |
| q_method = gr.Dropdown( | |
| ["F32", "F16", "Q8_0"], | |
| label="Quantization Method", | |
| info="(Note: Quantization less than Q8 produces very poor results)", | |
| value="F16", | |
| filterable=False, | |
| visible=True | |
| ) | |
| private_repo = gr.Checkbox( | |
| value=False, | |
| label="Private Repo", | |
| info="Create a private repo under your username." | |
| ) | |
| iface = gr.Interface( | |
| fn=process_model, | |
| inputs=[ | |
| peft_model_id, | |
| base_model_id, | |
| q_method, | |
| private_repo, | |
| ], | |
| outputs=[ | |
| gr.Markdown(label="output"), | |
| ], | |
| title="Convert PEFT LoRA adapters to GGUF, blazingly fast β‘!", | |
| description="The space takes a PEFT LoRA (stored in a HF repo) as input, converts it to GGUF and creates a Public repo under your HF user namespace.<br/><br/>For more information, please refer to [this blog post](https://huggingface.co/blog/ngxson/gguf-my-lora)", | |
| api_name=False | |
| ) | |
| def refresh_llama_cpp(): | |
| result = subprocess.run("cd llama.cpp && git pull", shell=True, capture_output=True) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(refresh_llama_cpp, "interval", seconds=5*60) | |
| scheduler.start() | |
| # Launch the interface | |
| demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |