Spaces:
Running
on
A10G
Running
on
A10G
| import os | |
| import subprocess | |
| import signal | |
| import tempfile | |
| from pathlib import Path | |
| from textwrap import dedent | |
| from typing import Optional, Tuple, List, Union | |
| from dataclasses import dataclass, field | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| import gradio as gr | |
| from huggingface_hub import HfApi, ModelCard, whoami | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| class QuantizationConfig: | |
| """Configuration for model quantization.""" | |
| method: str | |
| use_imatrix: bool = False | |
| imatrix_method: str = "IQ4_NL" | |
| quant_embedding: bool = False | |
| embedding_tensor_method: str = "Q8_0" | |
| leave_output: bool = False | |
| quant_output: bool = False | |
| output_tensor_method: str = "Q8_0" | |
| # Generated values - These will be set during processing | |
| fp16_model: str = field(default="", init=False) | |
| quantized_gguf: str = field(default="", init=False) | |
| imatrix_file: str = field(default="", init=False) | |
| class SplitConfig: | |
| """Configuration for model splitting.""" | |
| enabled: bool = False | |
| max_tensors: int = 256 | |
| max_size: Optional[str] = None | |
| class OutputConfig: | |
| """Configuration for output settings.""" | |
| private_repo: bool = False | |
| repo_name: str = "" | |
| filename: str = "" | |
| class ModelProcessingConfig: | |
| """Configuration for the entire model processing pipeline.""" | |
| token: str | |
| model_id: str | |
| model_name: str | |
| outdir: str | |
| quant_config: QuantizationConfig | |
| split_config: SplitConfig | |
| output_config: OutputConfig | |
| # Generated values - These will be set during processing | |
| new_repo_url: str = field(default="", init=False) | |
| new_repo_id: str = field(default="", init=False) | |
| class GGUFConverterError(Exception): | |
| """Custom exception for GGUF conversion errors.""" | |
| pass | |
| class HuggingFaceModelProcessor: | |
| """Handles the processing of Hugging Face models to GGUF format.""" | |
| ERROR_LOGIN = "You must be logged in to use GGUF-my-repo." | |
| DOWNLOAD_FOLDER = "./downloads" | |
| OUTPUT_FOLDER = "./outputs" | |
| CALIBRATION_FILE = "calibration_data_v5_rc.txt" | |
| QUANTIZE_TIMEOUT=86400 | |
| HF_TO_GGUF_TIMEOUT=3600 | |
| IMATRIX_TIMEOUT=86400 | |
| SPLIT_TIMEOUT=3600 | |
| KILL_TIMEOUT=5 | |
| def __init__(self): | |
| self.SPACE_ID = os.environ.get("SPACE_ID", "") | |
| self.SPACE_URL = f"https://{self.SPACE_ID.replace('/', '-')}.hf.space/" if self.SPACE_ID else "http://localhost:7860/" | |
| self.HF_TOKEN = os.environ.get("HF_TOKEN") | |
| self.RUN_LOCALLY = os.environ.get("RUN_LOCALLY") | |
| # Create necessary folders | |
| self._create_folder(self.DOWNLOAD_FOLDER) | |
| self._create_folder(self.OUTPUT_FOLDER) | |
| def _create_folder(self, folder_name: str) -> str: | |
| """Create a folder if it doesn't exist.""" | |
| if not os.path.exists(folder_name): | |
| print(f"Creating folder: {folder_name}") | |
| os.makedirs(folder_name) | |
| return folder_name | |
| def _validate_token(self, oauth_token: Optional[gr.OAuthToken]) -> str: | |
| """Validate the OAuth token and return the token string.""" | |
| if oauth_token is None or oauth_token.token is None: | |
| raise GGUFConverterError(self.ERROR_LOGIN) | |
| try: | |
| whoami(oauth_token.token) | |
| return oauth_token.token | |
| except Exception as e: | |
| raise GGUFConverterError(self.ERROR_LOGIN) | |
| def _escape_html(self, s: str) -> str: | |
| """Escape HTML characters for safe display.""" | |
| replacements = [ | |
| ("&", "&"), | |
| ("<", "<"), | |
| (">", ">"), | |
| ('"', """), | |
| ("\n", "<br/>") | |
| ] | |
| for old, new in replacements: | |
| s = s.replace(old, new) | |
| return s | |
| def _get_model_creator(self, model_id: str) -> str: | |
| """Extract model creator from model ID.""" | |
| return model_id.split('/')[0] | |
| def _get_model_name(self, model_id: str) -> str: | |
| """Extract model name from model ID.""" | |
| return model_id.split('/')[-1] | |
| def _upload_file(self, processing_config: ModelProcessingConfig, path_or_fileobj: str, path_in_repo: str) -> None: | |
| """Upload a file to Hugging Face repository.""" | |
| if self.RUN_LOCALLY == "1": | |
| print("Skipping upload...") | |
| return | |
| api = HfApi(token=processing_config.token) | |
| api.upload_file( | |
| path_or_fileobj=path_or_fileobj, | |
| path_in_repo=path_in_repo, | |
| repo_id=processing_config.new_repo_id, | |
| ) | |
| def _generate_importance_matrix(self, quant_config: QuantizationConfig) -> None: | |
| """Generate importance matrix for quantization.""" | |
| if not os.path.isfile(quant_config.fp16_model): | |
| raise GGUFConverterError(f"Model file not found: {quant_config.fp16_model}") | |
| train_data_path = self.CALIBRATION_FILE | |
| if not os.path.isfile(train_data_path): | |
| raise GGUFConverterError(f"Training data file not found: {train_data_path}") | |
| print(f"Training data file path: {train_data_path}") | |
| print("Running imatrix command...") | |
| imatrix_command = [ | |
| "llama-imatrix", | |
| "-m", quant_config.fp16_model, | |
| "-f", train_data_path, | |
| "-ngl", "99", | |
| "--output-frequency", "10", | |
| "-o", quant_config.imatrix_file, | |
| ] | |
| process = subprocess.Popen(imatrix_command, shell=False, stderr=subprocess.STDOUT) | |
| try: | |
| process.wait(timeout=self.IMATRIX_TIMEOUT) | |
| except subprocess.TimeoutExpired: | |
| print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...") | |
| process.send_signal(signal.SIGINT) | |
| try: | |
| process.wait(timeout=self.KILL_TIMEOUT) | |
| except subprocess.TimeoutExpired: | |
| print("Imatrix proc still didn't term. Forcefully terminating process...") | |
| process.kill() | |
| raise GGUFConverterError("Error generating imatrix: Operation timed out.") | |
| if process.returncode != 0: | |
| raise GGUFConverterError(f"Error generating imatrix: code={process.returncode}.") | |
| print(f"Importance matrix generation completed: {os.path.abspath(quant_config.imatrix_file)}") | |
| def _split_and_upload_model(self, processing_config: ModelProcessingConfig) -> None: | |
| """Split large model files and upload shards.""" | |
| quant_config = processing_config.quant_config | |
| split_config = processing_config.split_config | |
| print(f"Model path: {quant_config.quantized_gguf}") | |
| print(f"Output dir: {processing_config.outdir}") | |
| split_cmd = ["llama-gguf-split", "--split"] | |
| if split_config.max_size: | |
| split_cmd.extend(["--split-max-size", split_config.max_size]) | |
| else: | |
| split_cmd.extend(["--split-max-tensors", str(split_config.max_tensors)]) | |
| model_path_prefix = '.'.join(quant_config.quantized_gguf.split('.')[:-1]) | |
| split_cmd.extend([quant_config.quantized_gguf, model_path_prefix]) | |
| print(f"Split command: {split_cmd}") | |
| process = subprocess.Popen(split_cmd, shell=False, stderr=subprocess.STDOUT) | |
| try: | |
| process.wait(timeout=self.SPLIT_TIMEOUT) | |
| except subprocess.TimeoutExpired: | |
| print("Splitting timed out. Sending SIGINT to allow graceful termination...") | |
| process.send_signal(signal.SIGINT) | |
| try: | |
| process.wait(timeout=self.KILL_TIMEOUT) | |
| except subprocess.TimeoutExpired: | |
| print("Splitting timed out. Killing process...") | |
| process.kill() | |
| raise GGUFConverterError("Error splitting the model: Operation timed out.") | |
| if process.returncode != 0: | |
| raise GGUFConverterError(f"Error splitting the model: code={process.returncode}") | |
| print("Model split successfully!") | |
| # Remove original model file | |
| if os.path.exists(quant_config.quantized_gguf): | |
| os.remove(quant_config.quantized_gguf) | |
| model_file_prefix = model_path_prefix.split('/')[-1] | |
| print(f"Model file name prefix: {model_file_prefix}") | |
| sharded_model_files = [ | |
| f for f in os.listdir(processing_config.outdir) | |
| if f.startswith(model_file_prefix) and f.endswith(".gguf") | |
| ] | |
| if not sharded_model_files: | |
| raise GGUFConverterError("No sharded files found.") | |
| print(f"Sharded model files: {sharded_model_files}") | |
| for file in sharded_model_files: | |
| file_path = os.path.join(processing_config.outdir, file) | |
| try: | |
| print(f"Uploading file: {file_path}") | |
| self._upload_file(processing_config, file_path, file) | |
| except Exception as e: | |
| raise GGUFConverterError(f"Error uploading file {file_path}: {e}") | |
| print("Sharded model has been uploaded successfully!") | |
| def _download_base_model(self, processing_config: ModelProcessingConfig) -> str: | |
| """Download and convert Hugging Face model to GGUF FP16 format.""" | |
| print(f"Downloading model {processing_config.model_name}") | |
| if os.path.exists(processing_config.quant_config.fp16_model): | |
| print("Skipping fp16 conversion...") | |
| print(f"Converted model path: {os.path.abspath(processing_config.quant_config.fp16_model)}") | |
| return processing_config.quant_config.fp16_model | |
| with tempfile.TemporaryDirectory(dir=self.DOWNLOAD_FOLDER) as tmpdir: | |
| local_dir = f"{Path(tmpdir)}/{processing_config.model_name}" | |
| print(f"Local directory: {os.path.abspath(local_dir)}") | |
| # Download model | |
| api = HfApi(token=processing_config.token) | |
| pattern = ( | |
| "*.safetensors" | |
| if any( | |
| file.path.endswith(".safetensors") | |
| for file in api.list_repo_tree( | |
| repo_id=processing_config.model_id, | |
| recursive=True, | |
| ) | |
| ) | |
| else "*.bin" | |
| ) | |
| dl_pattern = ["*.md", "*.json", "*.model"] | |
| dl_pattern += [pattern] | |
| api.snapshot_download(repo_id=processing_config.model_id, local_dir=local_dir, allow_patterns=dl_pattern) | |
| print("Model downloaded successfully!") | |
| print(f"Model directory contents: {os.listdir(local_dir)}") | |
| config_dir = os.path.join(local_dir, "config.json") | |
| adapter_config_dir = os.path.join(local_dir, "adapter_config.json") | |
| if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir): | |
| raise GGUFConverterError( | |
| 'adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, ' | |
| 'please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" ' | |
| 'style="text-decoration:underline">GGUF-my-lora</a>.' | |
| ) | |
| # Convert HF to GGUF | |
| print(f"Converting to GGUF FP16: {os.path.abspath(processing_config.quant_config.fp16_model)}") | |
| convert_command = [ | |
| "python3", "/app/convert_hf_to_gguf.py", local_dir, | |
| "--outtype", "f16", "--outfile", processing_config.quant_config.fp16_model | |
| ] | |
| process = subprocess.Popen(convert_command, shell=False, stderr=subprocess.STDOUT) | |
| try: | |
| process.wait(timeout=self.HF_TO_GGUF_TIMEOUT) | |
| except subprocess.TimeoutExpired: | |
| print("Conversion timed out. Sending SIGINT to allow graceful termination...") | |
| process.send_signal(signal.SIGINT) | |
| try: | |
| process.wait(timeout=self.KILL_TIMEOUT) | |
| except subprocess.TimeoutExpired: | |
| print("Conversion timed out. Killing process...") | |
| process.kill() | |
| raise GGUFConverterError("Error converting to fp16: Operation timed out.") | |
| if process.returncode != 0: | |
| raise GGUFConverterError(f"Error converting to fp16: code={process.returncode}") | |
| print("Model converted to fp16 successfully!") | |
| print(f"Converted model path: {os.path.abspath(processing_config.quant_config.fp16_model)}") | |
| return processing_config.quant_config.fp16_model | |
| def _quantize_model(self, quant_config: QuantizationConfig) -> str: | |
| """Quantize the GGUF model.""" | |
| quantize_cmd = ["llama-quantize"] | |
| if quant_config.quant_embedding: | |
| quantize_cmd.extend(["--token-embedding-type", quant_config.embedding_tensor_method]) | |
| if quant_config.leave_output: | |
| quantize_cmd.append("--leave-output-tensor") | |
| else: | |
| if quant_config.quant_output: | |
| quantize_cmd.extend(["--output-tensor-type", quant_config.output_tensor_method]) | |
| # Set imatrix file path if needed | |
| if quant_config.use_imatrix: | |
| self._generate_importance_matrix(quant_config) | |
| quantize_cmd.extend(["--imatrix", quant_config.imatrix_file]) | |
| else: | |
| print("Not using imatrix quantization.") | |
| quantize_cmd.append(quant_config.fp16_model) | |
| quantize_cmd.append(quant_config.quantized_gguf) | |
| if quant_config.use_imatrix: | |
| quantize_cmd.append(quant_config.imatrix_method) | |
| else: | |
| quantize_cmd.append(quant_config.method) | |
| print(f"Quantizing model with {quantize_cmd}") | |
| # Use Popen for quantization | |
| process = subprocess.Popen(quantize_cmd, shell=False, stderr=subprocess.STDOUT) | |
| try: | |
| process.wait(timeout=self.QUANTIZE_TIMEOUT) | |
| except subprocess.TimeoutExpired: | |
| print("Quantization timed out. Sending SIGINT to allow graceful termination...") | |
| process.send_signal(signal.SIGINT) | |
| try: | |
| process.wait(timeout=self.KILL_TIMEOUT) | |
| except subprocess.TimeoutExpired: | |
| print("Quantization timed out. Killing process...") | |
| process.kill() | |
| raise GGUFConverterError("Error quantizing: Operation timed out.") | |
| if process.returncode != 0: | |
| raise GGUFConverterError(f"Error quantizing: code={process.returncode}") | |
| print(f"Quantized successfully with {quant_config.imatrix_method if quant_config.use_imatrix else quant_config.method} option!") | |
| print(f"Quantized model path: {os.path.abspath(quant_config.quantized_gguf)}") | |
| return quant_config.quantized_gguf | |
| def _create_empty_repo(self, processing_config: ModelProcessingConfig): | |
| api = HfApi(token=processing_config.token) | |
| new_repo_url = api.create_repo( | |
| repo_id=processing_config.output_config.repo_name, | |
| exist_ok=True, | |
| private=processing_config.output_config.private_repo | |
| ) | |
| processing_config.new_repo_url = new_repo_url.url | |
| processing_config.new_repo_id = new_repo_url.repo_id | |
| print("Repo created successfully!", processing_config.new_repo_url) | |
| return new_repo_url | |
| def _generate_readme(self, processing_config: ModelProcessingConfig) -> str: | |
| """Generate README.md for the quantized model.""" | |
| creator = self._get_model_creator(processing_config.model_id) | |
| username = whoami(processing_config.token)["name"] | |
| try: | |
| card = ModelCard.load(processing_config.model_id, token=processing_config.token) | |
| except: | |
| card = ModelCard("") | |
| if card.data.tags is None: | |
| card.data.tags = [] | |
| card.data.tags.extend(["llama-cpp", "gguf-my-repo"]) | |
| card.data.base_model = processing_config.model_id | |
| card.text = dedent( | |
| f""" | |
| # {processing_config.model_name} | |
| **Model creator:** [{creator}](https://huggingface.co/{creator})<br/> | |
| **Original model**: [{processing_config.model_id}](https://huggingface.co/{processing_config.model_id})<br/> | |
| **GGUF quantization:** provided by [{username}](https:/huggingface.co/{username}) using `llama.cpp`<br/> | |
| ## Special thanks | |
| 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible. | |
| ## Use with Ollama | |
| ```bash | |
| ollama run "hf.co/{processing_config.new_repo_id}:<quantization>" | |
| ``` | |
| ## Use with LM Studio | |
| ```bash | |
| lms load "{processing_config.new_repo_id}" | |
| ``` | |
| ## Use with llama.cpp CLI | |
| ```bash | |
| llama-cli --hf-repo "{processing_config.new_repo_id}" --hf-file "{processing_config.output_config.filename}" -p "The meaning to life and the universe is" | |
| ``` | |
| ## Use with llama.cpp Server: | |
| ```bash | |
| llama-server --hf-repo "{processing_config.new_repo_id}" --hf-file "{processing_config.output_config.filename}" -c 4096 | |
| ``` | |
| """ | |
| ) | |
| readme_path = f"{processing_config.outdir}/README.md" | |
| card.save(readme_path) | |
| return readme_path | |
| def process_model(self, processing_config: ModelProcessingConfig) -> Tuple[str, str]: | |
| """Main method to process a model through the entire pipeline.""" | |
| quant_config = processing_config.quant_config | |
| split_config = processing_config.split_config | |
| output_config = processing_config.output_config | |
| print(f"Current working directory: {os.path.abspath(os.getcwd())}") | |
| # Download and convert base model | |
| self._download_base_model(processing_config) | |
| # Quantize the model | |
| self._quantize_model(quant_config) | |
| # Create empty repo | |
| self._create_empty_repo(processing_config) | |
| # Upload model | |
| if split_config.enabled: | |
| print(f"Splitting quantized model: {os.path.abspath(quant_config.quantized_gguf)}") | |
| self._split_and_upload_model(processing_config) | |
| else: | |
| try: | |
| print(f"Uploading quantized model: {os.path.abspath(quant_config.quantized_gguf)}") | |
| self._upload_file(processing_config, quant_config.quantized_gguf, output_config.filename) | |
| except Exception as e: | |
| raise GGUFConverterError(f"Error uploading quantized model: {e}") | |
| # Upload imatrix if it exists | |
| if quant_config.use_imatrix and os.path.isfile(quant_config.imatrix_file): | |
| try: | |
| print(f"Uploading imatrix.dat: {os.path.abspath(quant_config.imatrix_file)}") | |
| self._upload_file(processing_config, quant_config.imatrix_file, f"{processing_config.model_name}-imatrix.gguf") | |
| except Exception as e: | |
| raise GGUFConverterError(f"Error uploading imatrix.dat: {e}") | |
| # Upload README.md | |
| readme_path = self._generate_readme(processing_config) | |
| self._upload_file(processing_config, readme_path, "README.md") | |
| print(f"Uploaded successfully with {quant_config.imatrix_method if quant_config.use_imatrix else quant_config.method} option!") | |
| class GGUFConverterUI: | |
| """Gradio UI for the GGUF Converter.""" | |
| def __init__(self): | |
| self.processor = HuggingFaceModelProcessor() | |
| self.css = """/* Custom CSS to allow scrolling */ | |
| .gradio-container {overflow-y: auto;} | |
| """ | |
| # Initialize components | |
| self._initialize_components() | |
| self._setup_interface() | |
| def _initialize_components(self): | |
| """Initialize all UI components.""" | |
| ##### | |
| # Base model section | |
| ##### | |
| self.model_id = HuggingfaceHubSearch( | |
| label="Hub Model ID", | |
| placeholder="Search for model id on Huggingface", | |
| search_type="model", | |
| ) | |
| ##### | |
| # Quantization section | |
| ##### | |
| self.use_imatrix = gr.Checkbox( | |
| value=False, | |
| label="Use Imatrix Quantization", | |
| info="Use importance matrix for quantization." | |
| ) | |
| self.q_method = gr.Dropdown( | |
| choices=["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "F16", "BF16"], | |
| label="Quantization Method", | |
| info="GGML quantization type", | |
| value="Q4_K_M", | |
| filterable=False, | |
| visible=True | |
| ) | |
| self.imatrix_q_method = gr.Dropdown( | |
| choices=["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], | |
| label="Imatrix Quantization Method", | |
| info="GGML imatrix quants type", | |
| value="IQ4_NL", | |
| filterable=False, | |
| visible=False | |
| ) | |
| self.train_data_file = gr.File( | |
| label="Training Data File", | |
| file_types=[".txt"], | |
| visible=False | |
| ) | |
| ##### | |
| # Advanced Options section | |
| ##### | |
| self.split_model = gr.Checkbox( | |
| value=False, | |
| label="Split Model", | |
| info="Shard the model using gguf-split." | |
| ) | |
| self.split_max_tensors = gr.Number( | |
| value=256, | |
| label="Max Tensors per File", | |
| info="Maximum number of tensors per file when splitting model.", | |
| visible=False | |
| ) | |
| self.split_max_size = gr.Textbox( | |
| label="Max File Size", | |
| info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", | |
| visible=False | |
| ) | |
| self.leave_output = gr.Checkbox( | |
| value=False, | |
| label="Leave output tensor", | |
| info="Leaves output.weight un(re)quantized" | |
| ) | |
| self.quant_embedding = gr.Checkbox( | |
| value=False, | |
| label="Quant embeddings tensor", | |
| info="Quantize embeddings tensor separately" | |
| ) | |
| self.embedding_tensor_method = gr.Dropdown( | |
| choices=["Q2_K", "Q3_K", "Q4_K", "Q5_K", "Q6_K", "Q8_0"], | |
| label="Embeddings Quantization Method", | |
| info="use a specific quant type for the token embeddings tensor", | |
| value="Q8_0", | |
| filterable=False, | |
| visible=False | |
| ) | |
| self.quant_output = gr.Checkbox( | |
| value=False, | |
| label="Quant output tensor", | |
| info="Quantize output tensor separately" | |
| ) | |
| self.output_tensor_method = gr.Dropdown( | |
| choices=["Q2_K", "Q3_K", "Q4_K", "Q5_K", "Q6_K", "Q8_0"], | |
| label="Output Quantization Method", | |
| info="use a specific quant type for the output.weight tensor", | |
| value="Q8_0", | |
| filterable=False, | |
| visible=False | |
| ) | |
| ##### | |
| # Output Settings section | |
| ##### | |
| self.private_repo = gr.Checkbox( | |
| value=False, | |
| label="Private Repo", | |
| info="Create a private repo under your username." | |
| ) | |
| self.repo_name = gr.Textbox( | |
| label="Output Repository Name", | |
| info="Set your repository name", | |
| max_lines=1 | |
| ) | |
| self.gguf_name = gr.Textbox( | |
| label="Output File Name", | |
| info="Set output file name", | |
| max_lines=1 | |
| ) | |
| ##### | |
| # Buttons section | |
| ##### | |
| self.clear_btn = gr.ClearButton( | |
| value="Clear", | |
| variant="secondary", | |
| components=[ | |
| self.model_id, | |
| self.q_method, | |
| self.use_imatrix, | |
| self.imatrix_q_method, | |
| self.private_repo, | |
| self.train_data_file, | |
| self.leave_output, | |
| self.quant_embedding, | |
| self.embedding_tensor_method, | |
| self.quant_output, | |
| self.output_tensor_method, | |
| self.split_model, | |
| self.split_max_tensors, | |
| self.split_max_size, | |
| self.repo_name, | |
| self.gguf_name, | |
| ] | |
| ) | |
| self.submit_btn = gr.Button( | |
| value="Submit", | |
| variant="primary" | |
| ) | |
| ##### | |
| # Outputs section | |
| ##### | |
| self.output_label = gr.Markdown(label="output") | |
| self.output_image = gr.Image( | |
| show_label=False, | |
| show_download_button=False, | |
| interactive=False | |
| ) | |
| def _update_output_repo(model_id: str, oauth_token: Optional[gr.OAuthToken]) -> str: | |
| """Update output repository name based on model and user.""" | |
| if oauth_token is None or not oauth_token.token: | |
| return "" | |
| if not model_id: | |
| return "" | |
| try: | |
| username = whoami(oauth_token.token)["name"] | |
| model_name = model_id.split('/')[-1] | |
| return f"{username}/{model_name}-GGUF" | |
| except: | |
| return "" | |
| def _update_output_filename(model_id: str, use_imatrix: bool, q_method: str, imatrix_q_method: str) -> str: | |
| """Update output filename based on model and quantization settings.""" | |
| if not model_id: | |
| return "" | |
| model_name = model_id.split('/')[-1] | |
| if use_imatrix: | |
| return f"{model_name}-{imatrix_q_method.upper()}-imat.gguf" | |
| return f"{model_name}-{q_method.upper()}.gguf" | |
| def _setup_interface(self): | |
| """Set up the Gradio interface.""" | |
| with gr.Blocks(css=self.css) as self.demo: | |
| ##### | |
| # Layout | |
| ##### | |
| gr.Markdown(HuggingFaceModelProcessor.ERROR_LOGIN) | |
| gr.LoginButton(min_width=250) | |
| gr.HTML("<h1 style=\"text-aling:center;\">Create your own GGUF Quants!</h1>") | |
| gr.Markdown(f"The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.<br/>Use via {self.processor.SPACE_URL}") | |
| with gr.Row(): | |
| with gr.Column() as inputs: | |
| gr.Markdown("### Model Configuration") | |
| self.model_id.render() | |
| with gr.Column(): | |
| self.use_imatrix.render() | |
| self.q_method.render() | |
| self.imatrix_q_method.render() | |
| self.train_data_file.render() | |
| gr.Markdown("### Advanced Options") | |
| self.quant_embedding.render() | |
| self.embedding_tensor_method.render() | |
| self.leave_output.render() | |
| self.quant_output.render() | |
| self.output_tensor_method.render() | |
| self.split_model.render() | |
| with gr.Row() as split_options: | |
| self.split_max_tensors.render() | |
| self.split_max_size.render() | |
| gr.Markdown("### Output Settings") | |
| gr.Markdown("You can customize settings for your GGUF repo.") | |
| self.private_repo.render() | |
| with gr.Row(): | |
| self.repo_name.render() | |
| self.gguf_name.render() | |
| # Buttons | |
| with gr.Row() as buttons: | |
| self.clear_btn.render() | |
| self.submit_btn.render() | |
| with gr.Column() as outputs: | |
| self.output_label.render() | |
| self.output_image.render() | |
| ##### | |
| # Event handlers | |
| ##### | |
| self.submit_btn.click( | |
| fn=self._process_model_wrapper, | |
| inputs=[ | |
| self.model_id, | |
| self.q_method, | |
| self.use_imatrix, | |
| self.imatrix_q_method, | |
| self.private_repo, | |
| self.train_data_file, | |
| self.repo_name, | |
| self.gguf_name, | |
| self.quant_embedding, | |
| self.embedding_tensor_method, | |
| self.leave_output, | |
| self.quant_output, | |
| self.output_tensor_method, | |
| self.split_model, | |
| self.split_max_tensors, | |
| self.split_max_size | |
| ], | |
| outputs=[ | |
| self.output_label, | |
| self.output_image, | |
| ], | |
| ) | |
| ##### | |
| # OnChange handlers | |
| ##### | |
| self.use_imatrix.change( | |
| fn=lambda use_imatrix: [gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)], | |
| inputs=self.use_imatrix, | |
| outputs=[self.q_method, self.imatrix_q_method, self.train_data_file] | |
| ) | |
| self.split_model.change( | |
| fn=lambda split_model: [gr.update(visible=split_model), gr.update(visible=split_model)], | |
| inputs=self.split_model, | |
| outputs=[self.split_max_tensors, self.split_max_size] | |
| ) | |
| self.quant_embedding.change( | |
| fn=lambda quant_embedding: gr.update(visible=quant_embedding), | |
| inputs=self.quant_embedding, | |
| outputs=[self.embedding_tensor_method] | |
| ) | |
| self.leave_output.change( | |
| fn=lambda leave_output, quant_output: [gr.update(visible=not leave_output), gr.update(visible=not leave_output and quant_output)], | |
| inputs=[self.leave_output, self.leave_output], | |
| outputs=[self.quant_output, self.output_tensor_method] | |
| ) | |
| self.quant_output.change( | |
| fn=lambda quant_output: [gr.update(visible=not quant_output), gr.update(visible=quant_output)], | |
| inputs=self.quant_output, | |
| outputs=[self.leave_output, self.output_tensor_method] | |
| ) | |
| self.model_id.change( | |
| fn=self._update_output_repo, | |
| inputs=[self.model_id], | |
| outputs=[self.repo_name] | |
| ) | |
| self.model_id.change( | |
| fn=self._update_output_filename, | |
| inputs=[self.model_id, self.use_imatrix, self.q_method, self.imatrix_q_method], | |
| outputs=[self.gguf_name] | |
| ) | |
| self.use_imatrix.change( | |
| fn=self._update_output_filename, | |
| inputs=[self.model_id, self.use_imatrix, self.q_method, self.imatrix_q_method], | |
| outputs=[self.gguf_name] | |
| ) | |
| self.q_method.change( | |
| fn=self._update_output_filename, | |
| inputs=[self.model_id, self.use_imatrix, self.q_method, self.imatrix_q_method], | |
| outputs=[self.gguf_name] | |
| ) | |
| self.imatrix_q_method.change( | |
| fn=self._update_output_filename, | |
| inputs=[self.model_id, self.use_imatrix, self.q_method, self.imatrix_q_method], | |
| outputs=[self.gguf_name] | |
| ) | |
| def _process_model_wrapper(self, model_id: str, q_method: str, use_imatrix: bool, | |
| imatrix_q_method: str, private_repo: bool, train_data_file, | |
| repo_name: str, gguf_name: str, quant_embedding: bool, | |
| embedding_tensor_method: str, leave_output: bool, | |
| quant_output: bool, output_tensor_method: str, | |
| split_model: bool, split_max_tensors, split_max_size: str, oauth_token: Optional[gr.OAuthToken]) -> Tuple[str, str]: | |
| """Wrapper for the process_model method to handle the conversion using ModelProcessingConfig.""" | |
| try: | |
| # Validate token and get token string | |
| token = self.processor._validate_token(oauth_token) | |
| # Create configuration objects | |
| quant_config = QuantizationConfig( | |
| method=q_method, | |
| use_imatrix=use_imatrix, | |
| imatrix_method=imatrix_q_method, | |
| quant_embedding=quant_embedding, | |
| embedding_tensor_method=embedding_tensor_method, | |
| leave_output=leave_output, | |
| quant_output=quant_output, | |
| output_tensor_method=output_tensor_method | |
| ) | |
| split_config = SplitConfig( | |
| enabled=split_model, | |
| max_tensors=split_max_tensors if isinstance(split_max_tensors, int) else 256, | |
| max_size=split_max_size | |
| ) | |
| output_config = OutputConfig( | |
| private_repo=private_repo, | |
| repo_name=repo_name, | |
| filename=gguf_name | |
| ) | |
| model_name = self.processor._get_model_name(model_id) | |
| with tempfile.TemporaryDirectory(dir=self.processor.OUTPUT_FOLDER) as outDirObj: | |
| outdir = ( | |
| self.processor._create_folder(os.path.join(self.processor.OUTPUT_FOLDER, model_name)) | |
| if self.processor.RUN_LOCALLY == "1" | |
| else Path(outDirObj) | |
| ) | |
| quant_config.fp16_model = f"{outdir}/{model_name}-fp16.gguf" | |
| quant_config.imatrix_file = f"{outdir}/{model_name}-imatrix.gguf" | |
| quant_config.quantized_gguf = f"{outdir}/{gguf_name}" | |
| processing_config = ModelProcessingConfig( | |
| token=token, | |
| model_id=model_id, | |
| model_name=model_name, | |
| outdir=outdir, | |
| quant_config=quant_config, | |
| split_config=split_config, | |
| output_config=output_config | |
| ) | |
| # Call the processor's main method with the config object | |
| self.processor.process_model(processing_config) | |
| return ( | |
| f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{processing_config.new_repo_url}" target="_blank" style="text-decoration:underline">{processing_config.new_repo_id}</a>', | |
| "llama.png", | |
| ) | |
| except Exception as e: | |
| print(f"Error processing model: {e}") | |
| return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{self.processor._escape_html(str(e))}</pre>', "error.png") | |
| def launch(self): | |
| """Launch the Gradio interface.""" | |
| # Set up space restart scheduler | |
| def restart_space(): | |
| HfApi().restart_space(repo_id=self.processor.SPACE_ID, token=self.processor.HF_TOKEN, factory_reboot=True) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=21600) | |
| scheduler.start() | |
| # Launch the interface | |
| self.demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) | |
| # Main execution | |
| if __name__ == "__main__": | |
| ui = GGUFConverterUI() | |
| ui.launch() | |