Spaces:
Running
on
A10G
Running
on
A10G
| import os | |
| import shutil | |
| import subprocess | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| import gradio as gr | |
| from huggingface_hub import create_repo, HfApi | |
| from huggingface_hub import snapshot_download | |
| from huggingface_hub import whoami | |
| from huggingface_hub import ModelCard | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from textwrap import dedent | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None): | |
| if oauth_token.token is None: | |
| raise ValueError("You have to be logged in.") | |
| split_cmd = f"llama.cpp/gguf-split --split --split-max-tensors {split_max_tensors}" | |
| if split_max_size: | |
| split_cmd += f" --split-max-size {split_max_size}" | |
| split_cmd += f" {model_path} {model_path.split('.')[0]}" | |
| print(f"Split command: {split_cmd}") | |
| result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True) | |
| print(f"Split command stdout: {result.stdout}") | |
| print(f"Split command stderr: {result.stderr}") | |
| if result.returncode != 0: | |
| raise Exception(f"Error splitting the model: {result.stderr}") | |
| print("Model split successfully!") | |
| sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])] | |
| if sharded_model_files: | |
| print(f"Sharded model files: {sharded_model_files}") | |
| api = HfApi(token=oauth_token.token) | |
| for file in sharded_model_files: | |
| file_path = os.path.join('.', file) | |
| print(f"Uploading file: {file_path}") | |
| try: | |
| api.upload_file( | |
| path_or_fileobj=file_path, | |
| path_in_repo=file, | |
| repo_id=repo_id, | |
| ) | |
| except Exception as e: | |
| raise Exception(f"Error uploading file {file_path}: {e}") | |
| else: | |
| raise Exception("No sharded files found.") | |
| print("Sharded model has been uploaded successfully!") | |
| def process_model(model_id, q_method, private_repo, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None): | |
| if oauth_token.token is None: | |
| raise ValueError("You must be logged in to use GGUF-my-repo") | |
| model_name = model_id.split('/')[-1] | |
| fp16 = f"{model_name}.fp16.gguf" | |
| try: | |
| api = HfApi(token=oauth_token.token) | |
| dl_pattern = ["*.md", "*.json", "*.model"] | |
| pattern = ( | |
| "*.safetensors" | |
| if any( | |
| file.path.endswith(".safetensors") | |
| for file in api.list_repo_tree( | |
| repo_id=model_id, | |
| recursive=True, | |
| ) | |
| ) | |
| else "*.bin" | |
| ) | |
| dl_pattern += pattern | |
| api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern) | |
| print("Model downloaded successfully!") | |
| print(f"Current working directory: {os.getcwd()}") | |
| print(f"Model directory contents: {os.listdir(model_name)}") | |
| conversion_script = "convert-hf-to-gguf.py" | |
| fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}" | |
| result = subprocess.run(fp16_conversion, shell=True, capture_output=True) | |
| print(result) | |
| if result.returncode != 0: | |
| raise Exception(f"Error converting to fp16: {result.stderr}") | |
| print("Model converted to fp16 successfully!") | |
| print(f"Converted model path: {fp16}") | |
| username = whoami(oauth_token.token)["name"] | |
| quantized_gguf_name = f"{model_name.lower()}-{q_method.lower()}.gguf" | |
| quantized_gguf_path = quantized_gguf_name | |
| quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}" | |
| result = subprocess.run(quantise_ggml, shell=True, capture_output=True) | |
| if result.returncode != 0: | |
| raise Exception(f"Error quantizing: {result.stderr}") | |
| print(f"Quantized successfully with {q_method} option!") | |
| print(f"Quantized model path: {quantized_gguf_path}") | |
| # Create empty repo | |
| new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo) | |
| new_repo_id = new_repo_url.repo_id | |
| print("Repo created successfully!", new_repo_url) | |
| try: | |
| card = ModelCard.load(model_id, token=oauth_token.token) | |
| except: | |
| card = ModelCard("") | |
| if card.data.tags is None: | |
| card.data.tags = [] | |
| card.data.tags.append("llama-cpp") | |
| card.data.tags.append("gguf-my-repo") | |
| card.data.base_model = model_id | |
| card.text = dedent( | |
| f""" | |
| # {new_repo_id} | |
| This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. | |
| Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model. | |
| ## Use with llama.cpp | |
| Install llama.cpp through brew (works on Mac and Linux) | |
| ```bash | |
| brew install llama.cpp | |
| ``` | |
| Invoke the llama.cpp server or the CLI. | |
| ### CLI: | |
| ```bash | |
| llama --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is" | |
| ``` | |
| ### Server: | |
| ```bash | |
| llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048 | |
| ``` | |
| Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. | |
| Step 1: Clone llama.cpp from GitHub. | |
| ``` | |
| git clone https://github.com/ggerganov/llama.cpp | |
| ``` | |
| Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). | |
| ``` | |
| cd llama.cpp && LLAMA_CURL=1 make | |
| ``` | |
| Step 3: Run inference through the main binary. | |
| ``` | |
| ./main --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is" | |
| ``` | |
| or | |
| ``` | |
| ./server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048 | |
| ``` | |
| """ | |
| ) | |
| card.save(f"README.md") | |
| if split_model: | |
| split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size) | |
| else: | |
| try: | |
| print(f"Uploading quantized model: {quantized_gguf_path}") | |
| api.upload_file( | |
| path_or_fileobj=quantized_gguf_path, | |
| path_in_repo=quantized_gguf_name, | |
| repo_id=new_repo_id, | |
| ) | |
| except Exception as e: | |
| raise Exception(f"Error uploading quantized model: {e}") | |
| api.upload_file( | |
| path_or_fileobj=f"README.md", | |
| path_in_repo=f"README.md", | |
| repo_id=new_repo_id, | |
| ) | |
| print(f"Uploaded successfully with {q_method} option!") | |
| return ( | |
| f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', | |
| "llama.png", | |
| ) | |
| except Exception as e: | |
| return (f"Error: {e}", "error.png") | |
| finally: | |
| shutil.rmtree(model_name, ignore_errors=True) | |
| print("Folder cleaned up successfully!") | |
| # Create Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("You must be logged in to use GGUF-my-repo.") | |
| gr.LoginButton(min_width=250) | |
| model_id_input = HuggingfaceHubSearch( | |
| label="Hub Model ID", | |
| placeholder="Search for model id on Huggingface", | |
| search_type="model", | |
| ) | |
| q_method_input = gr.Dropdown( | |
| ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], | |
| label="Quantization Method", | |
| info="GGML quantization type", | |
| value="Q4_K_M", | |
| filterable=False | |
| ) | |
| private_repo_input = gr.Checkbox( | |
| value=False, | |
| label="Private Repo", | |
| info="Create a private repo under your username." | |
| ) | |
| split_model_input = gr.Checkbox( | |
| value=False, | |
| label="Split Model", | |
| info="Shard the model using gguf-split." | |
| ) | |
| split_max_tensors_input = gr.Number( | |
| value=256, | |
| label="Max Tensors per File", | |
| info="Maximum number of tensors per file when splitting model.", | |
| visible=False | |
| ) | |
| split_max_size_input = gr.Textbox( | |
| label="Max File Size", | |
| info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", | |
| visible=False | |
| ) | |
| iface = gr.Interface( | |
| fn=process_model, | |
| inputs=[ | |
| model_id_input, | |
| q_method_input, | |
| private_repo_input, | |
| split_model_input, | |
| split_max_tensors_input, | |
| split_max_size_input, | |
| ], | |
| outputs=[ | |
| gr.Markdown(label="output"), | |
| gr.Image(show_label=False), | |
| ], | |
| title="Create your own GGUF Quants, blazingly fast ⚡!", | |
| description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.", | |
| api_name=False | |
| ) | |
| def update_visibility(split_model): | |
| return gr.update(visible=split_model), gr.update(visible=split_model) | |
| split_model_input.change( | |
| fn=update_visibility, | |
| inputs=split_model_input, | |
| outputs=[split_max_tensors_input, split_max_size_input] | |
| ) | |
| def restart_space(): | |
| HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=21600) | |
| scheduler.start() | |
| # Launch the interface | |
| demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |