Spaces:
Running
on
A10G
Running
on
A10G
Imatrix
Browse files- Dockerfile.bak +0 -63
- app.py.bak +0 -375
- start.sh.bak +0 -5
Dockerfile.bak
DELETED
|
@@ -1,63 +0,0 @@
|
|
| 1 |
-
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
|
| 2 |
-
|
| 3 |
-
ENV DEBIAN_FRONTEND=noninteractive
|
| 4 |
-
RUN apt-get update && \
|
| 5 |
-
apt-get upgrade -y && \
|
| 6 |
-
apt-get install -y --no-install-recommends \
|
| 7 |
-
git \
|
| 8 |
-
git-lfs \
|
| 9 |
-
wget \
|
| 10 |
-
curl \
|
| 11 |
-
# python build dependencies \
|
| 12 |
-
build-essential \
|
| 13 |
-
libssl-dev \
|
| 14 |
-
zlib1g-dev \
|
| 15 |
-
libbz2-dev \
|
| 16 |
-
libreadline-dev \
|
| 17 |
-
libsqlite3-dev \
|
| 18 |
-
libncursesw5-dev \
|
| 19 |
-
xz-utils \
|
| 20 |
-
tk-dev \
|
| 21 |
-
libxml2-dev \
|
| 22 |
-
libxmlsec1-dev \
|
| 23 |
-
libffi-dev \
|
| 24 |
-
liblzma-dev \
|
| 25 |
-
ffmpeg \
|
| 26 |
-
nvidia-driver-515
|
| 27 |
-
|
| 28 |
-
RUN useradd -m -u 1000 user
|
| 29 |
-
USER user
|
| 30 |
-
ENV HOME=/home/user \
|
| 31 |
-
PATH=/home/user/.local/bin:${PATH}
|
| 32 |
-
WORKDIR ${HOME}/app
|
| 33 |
-
|
| 34 |
-
RUN curl https://pyenv.run | bash
|
| 35 |
-
ENV PATH=${HOME}/.pyenv/shims:${HOME}/.pyenv/bin:${PATH}
|
| 36 |
-
ARG PYTHON_VERSION=3.10.13
|
| 37 |
-
RUN pyenv install ${PYTHON_VERSION} && \
|
| 38 |
-
pyenv global ${PYTHON_VERSION} && \
|
| 39 |
-
pyenv rehash && \
|
| 40 |
-
pip install --no-cache-dir -U pip setuptools wheel && \
|
| 41 |
-
pip install "huggingface-hub" "hf-transfer" "gradio[oauth]>=4.28.0" "gradio_huggingfacehub_search==0.0.7" "APScheduler"
|
| 42 |
-
|
| 43 |
-
COPY --chown=1000 . ${HOME}/app
|
| 44 |
-
RUN git clone https://github.com/ggerganov/llama.cpp
|
| 45 |
-
RUN pip install -r llama.cpp/requirements.txt
|
| 46 |
-
|
| 47 |
-
COPY imatrix_calibration.txt ${HOME}/app/llama.cpp/
|
| 48 |
-
|
| 49 |
-
ENV PYTHONPATH=${HOME}/app \
|
| 50 |
-
PYTHONUNBUFFERED=1 \
|
| 51 |
-
HF_HUB_ENABLE_HF_TRANSFER=1 \
|
| 52 |
-
GRADIO_ALLOW_FLAGGING=never \
|
| 53 |
-
GRADIO_NUM_PORTS=1 \
|
| 54 |
-
GRADIO_SERVER_NAME=0.0.0.0 \
|
| 55 |
-
GRADIO_THEME=huggingface \
|
| 56 |
-
TQDM_POSITION=-1 \
|
| 57 |
-
TQDM_MININTERVAL=1 \
|
| 58 |
-
SYSTEM=spaces \
|
| 59 |
-
LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH} \
|
| 60 |
-
PATH=/usr/local/nvidia/bin:${PATH}
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
ENTRYPOINT ["/bin/bash", "-c", "cd llama.cpp && LLAMA_CUDA=1 make -j && cd .. && /bin/sh start.sh"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py.bak
DELETED
|
@@ -1,375 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import shutil
|
| 3 |
-
import subprocess
|
| 4 |
-
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 5 |
-
import gradio as gr
|
| 6 |
-
|
| 7 |
-
from huggingface_hub import create_repo, HfApi
|
| 8 |
-
from huggingface_hub import snapshot_download
|
| 9 |
-
from huggingface_hub import whoami
|
| 10 |
-
from huggingface_hub import ModelCard
|
| 11 |
-
|
| 12 |
-
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 13 |
-
|
| 14 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 15 |
-
|
| 16 |
-
from textwrap import dedent
|
| 17 |
-
|
| 18 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 19 |
-
|
| 20 |
-
def generate_importance_matrix(model_path, train_data_path):
|
| 21 |
-
imatrix_command = f"./imatrix -m ../{model_path} -f {train_data_path} -ngl 99"
|
| 22 |
-
|
| 23 |
-
os.chdir("llama.cpp")
|
| 24 |
-
|
| 25 |
-
compile_command = "LLAMA_CUDA=1 make -j"
|
| 26 |
-
compile_result = subprocess.run(compile_command, shell=True, capture_output=True, text=True)
|
| 27 |
-
if compile_result.returncode != 0:
|
| 28 |
-
raise Exception(f"Error compiling imatrix: {compile_result.stderr}")
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
print(f"Current working directory: {os.getcwd()}")
|
| 32 |
-
print(f"Files in the current directory: {os.listdir('.')}")
|
| 33 |
-
|
| 34 |
-
if not os.path.isfile(f"../{model_path}"):
|
| 35 |
-
raise Exception(f"Model file not found: {model_path}")
|
| 36 |
-
|
| 37 |
-
print("Running imatrix command...")
|
| 38 |
-
result = subprocess.run(imatrix_command, shell=True, capture_output=True, text=True)
|
| 39 |
-
|
| 40 |
-
os.chdir("..")
|
| 41 |
-
|
| 42 |
-
if result.returncode != 0:
|
| 43 |
-
raise Exception(f"Error generating importance matrix: {result.stderr}")
|
| 44 |
-
print("Importance matrix generated successfully!")
|
| 45 |
-
|
| 46 |
-
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
| 47 |
-
if oauth_token.token is None:
|
| 48 |
-
raise ValueError("You have to be logged in.")
|
| 49 |
-
|
| 50 |
-
split_cmd = f"llama.cpp/gguf-split --split --split-max-tensors {split_max_tensors}"
|
| 51 |
-
if split_max_size:
|
| 52 |
-
split_cmd += f" --split-max-size {split_max_size}"
|
| 53 |
-
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
| 54 |
-
|
| 55 |
-
print(f"Split command: {split_cmd}")
|
| 56 |
-
|
| 57 |
-
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
| 58 |
-
print(f"Split command stdout: {result.stdout}")
|
| 59 |
-
print(f"Split command stderr: {result.stderr}")
|
| 60 |
-
|
| 61 |
-
if result.returncode != 0:
|
| 62 |
-
raise Exception(f"Error splitting the model: {result.stderr}")
|
| 63 |
-
print("Model split successfully!")
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
| 67 |
-
if sharded_model_files:
|
| 68 |
-
print(f"Sharded model files: {sharded_model_files}")
|
| 69 |
-
api = HfApi(token=oauth_token.token)
|
| 70 |
-
for file in sharded_model_files:
|
| 71 |
-
file_path = os.path.join('.', file)
|
| 72 |
-
print(f"Uploading file: {file_path}")
|
| 73 |
-
try:
|
| 74 |
-
api.upload_file(
|
| 75 |
-
path_or_fileobj=file_path,
|
| 76 |
-
path_in_repo=file,
|
| 77 |
-
repo_id=repo_id,
|
| 78 |
-
)
|
| 79 |
-
except Exception as e:
|
| 80 |
-
raise Exception(f"Error uploading file {file_path}: {e}")
|
| 81 |
-
else:
|
| 82 |
-
raise Exception("No sharded files found.")
|
| 83 |
-
|
| 84 |
-
print("Sharded model has been uploaded successfully!")
|
| 85 |
-
|
| 86 |
-
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
| 87 |
-
if oauth_token.token is None:
|
| 88 |
-
raise ValueError("You must be logged in to use GGUF-my-repo")
|
| 89 |
-
model_name = model_id.split('/')[-1]
|
| 90 |
-
fp16 = f"{model_name}.fp16.gguf"
|
| 91 |
-
|
| 92 |
-
try:
|
| 93 |
-
api = HfApi(token=oauth_token.token)
|
| 94 |
-
|
| 95 |
-
dl_pattern = ["*.md", "*.json", "*.model"]
|
| 96 |
-
|
| 97 |
-
pattern = (
|
| 98 |
-
"*.safetensors"
|
| 99 |
-
if any(
|
| 100 |
-
file.path.endswith(".safetensors")
|
| 101 |
-
for file in api.list_repo_tree(
|
| 102 |
-
repo_id=model_id,
|
| 103 |
-
recursive=True,
|
| 104 |
-
)
|
| 105 |
-
)
|
| 106 |
-
else "*.bin"
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
dl_pattern += pattern
|
| 110 |
-
|
| 111 |
-
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 112 |
-
print("Model downloaded successfully!")
|
| 113 |
-
print(f"Current working directory: {os.getcwd()}")
|
| 114 |
-
print(f"Model directory contents: {os.listdir(model_name)}")
|
| 115 |
-
|
| 116 |
-
conversion_script = "convert-hf-to-gguf.py"
|
| 117 |
-
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
| 118 |
-
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
| 119 |
-
print(result)
|
| 120 |
-
if result.returncode != 0:
|
| 121 |
-
raise Exception(f"Error converting to fp16: {result.stderr}")
|
| 122 |
-
print("Model converted to fp16 successfully!")
|
| 123 |
-
print(f"Converted model path: {fp16}")
|
| 124 |
-
|
| 125 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
| 126 |
-
|
| 127 |
-
if use_imatrix:
|
| 128 |
-
if train_data_file:
|
| 129 |
-
train_data_path = train_data_file.name
|
| 130 |
-
else:
|
| 131 |
-
train_data_path = "imatrix_calibration.txt"
|
| 132 |
-
|
| 133 |
-
print(f"Training data file path: {train_data_path}")
|
| 134 |
-
|
| 135 |
-
if not os.path.isfile(train_data_path):
|
| 136 |
-
raise Exception(f"Training data file not found: {train_data_path}")
|
| 137 |
-
|
| 138 |
-
generate_importance_matrix(fp16, train_data_path)
|
| 139 |
-
else:
|
| 140 |
-
print("Not using imatrix quantization.")
|
| 141 |
-
username = whoami(oauth_token.token)["name"]
|
| 142 |
-
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
| 143 |
-
quantized_gguf_path = quantized_gguf_name
|
| 144 |
-
if use_imatrix:
|
| 145 |
-
quantise_ggml = f"./llama.cpp/quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
| 146 |
-
else:
|
| 147 |
-
quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}"
|
| 148 |
-
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
| 149 |
-
if result.returncode != 0:
|
| 150 |
-
raise Exception(f"Error quantizing: {result.stderr}")
|
| 151 |
-
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
| 152 |
-
print(f"Quantized model path: {quantized_gguf_path}")
|
| 153 |
-
|
| 154 |
-
# Create empty repo
|
| 155 |
-
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
| 156 |
-
new_repo_id = new_repo_url.repo_id
|
| 157 |
-
print("Repo created successfully!", new_repo_url)
|
| 158 |
-
|
| 159 |
-
try:
|
| 160 |
-
card = ModelCard.load(model_id, token=oauth_token.token)
|
| 161 |
-
except:
|
| 162 |
-
card = ModelCard("")
|
| 163 |
-
if card.data.tags is None:
|
| 164 |
-
card.data.tags = []
|
| 165 |
-
card.data.tags.append("llama-cpp")
|
| 166 |
-
card.data.tags.append("gguf-my-repo")
|
| 167 |
-
card.data.base_model = model_id
|
| 168 |
-
card.text = dedent(
|
| 169 |
-
f"""
|
| 170 |
-
# {new_repo_id}
|
| 171 |
-
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
| 172 |
-
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
| 173 |
-
|
| 174 |
-
## Use with llama.cpp
|
| 175 |
-
Install llama.cpp through brew (works on Mac and Linux)
|
| 176 |
-
|
| 177 |
-
```bash
|
| 178 |
-
brew install llama.cpp
|
| 179 |
-
|
| 180 |
-
```
|
| 181 |
-
Invoke the llama.cpp server or the CLI.
|
| 182 |
-
|
| 183 |
-
### CLI:
|
| 184 |
-
```bash
|
| 185 |
-
llama --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
| 186 |
-
```
|
| 187 |
-
|
| 188 |
-
### Server:
|
| 189 |
-
```bash
|
| 190 |
-
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
| 191 |
-
```
|
| 192 |
-
|
| 193 |
-
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
| 194 |
-
|
| 195 |
-
Step 1: Clone llama.cpp from GitHub.
|
| 196 |
-
```
|
| 197 |
-
git clone https://github.com/ggerganov/llama.cpp
|
| 198 |
-
```
|
| 199 |
-
|
| 200 |
-
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
| 201 |
-
```
|
| 202 |
-
cd llama.cpp && LLAMA_CURL=1 make
|
| 203 |
-
```
|
| 204 |
-
|
| 205 |
-
Step 3: Run inference through the main binary.
|
| 206 |
-
```
|
| 207 |
-
./main --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
| 208 |
-
```
|
| 209 |
-
or
|
| 210 |
-
```
|
| 211 |
-
./server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
| 212 |
-
```
|
| 213 |
-
"""
|
| 214 |
-
)
|
| 215 |
-
card.save(f"README.md")
|
| 216 |
-
|
| 217 |
-
if split_model:
|
| 218 |
-
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
| 219 |
-
else:
|
| 220 |
-
try:
|
| 221 |
-
print(f"Uploading quantized model: {quantized_gguf_path}")
|
| 222 |
-
api.upload_file(
|
| 223 |
-
path_or_fileobj=quantized_gguf_path,
|
| 224 |
-
path_in_repo=quantized_gguf_name,
|
| 225 |
-
repo_id=new_repo_id,
|
| 226 |
-
)
|
| 227 |
-
except Exception as e:
|
| 228 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
| 232 |
-
if os.path.isfile(imatrix_path):
|
| 233 |
-
try:
|
| 234 |
-
print(f"Uploading imatrix.dat: {imatrix_path}")
|
| 235 |
-
api.upload_file(
|
| 236 |
-
path_or_fileobj=imatrix_path,
|
| 237 |
-
path_in_repo="imatrix.dat",
|
| 238 |
-
repo_id=new_repo_id,
|
| 239 |
-
)
|
| 240 |
-
except Exception as e:
|
| 241 |
-
raise Exception(f"Error uploading imatrix.dat: {e}")
|
| 242 |
-
|
| 243 |
-
api.upload_file(
|
| 244 |
-
path_or_fileobj=f"README.md",
|
| 245 |
-
path_in_repo=f"README.md",
|
| 246 |
-
repo_id=new_repo_id,
|
| 247 |
-
)
|
| 248 |
-
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
| 249 |
-
|
| 250 |
-
return (
|
| 251 |
-
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
| 252 |
-
"llama.png",
|
| 253 |
-
)
|
| 254 |
-
except Exception as e:
|
| 255 |
-
return (f"Error: {e}", "error.png")
|
| 256 |
-
finally:
|
| 257 |
-
shutil.rmtree(model_name, ignore_errors=True)
|
| 258 |
-
print("Folder cleaned up successfully!")
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
# Create Gradio interface
|
| 262 |
-
with gr.Blocks(css=".gradio-container {max-height: 600px; overflow-y: auto;}") as demo:
|
| 263 |
-
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
| 264 |
-
gr.LoginButton(min_width=250)
|
| 265 |
-
|
| 266 |
-
model_id = HuggingfaceHubSearch(
|
| 267 |
-
label="Hub Model ID",
|
| 268 |
-
placeholder="Search for model id on Huggingface",
|
| 269 |
-
search_type="model",
|
| 270 |
-
)
|
| 271 |
-
|
| 272 |
-
q_method = gr.Dropdown(
|
| 273 |
-
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
| 274 |
-
label="Quantization Method",
|
| 275 |
-
info="GGML quantization type",
|
| 276 |
-
value="Q4_K_M",
|
| 277 |
-
filterable=False,
|
| 278 |
-
visible=True
|
| 279 |
-
)
|
| 280 |
-
|
| 281 |
-
imatrix_q_method = gr.Dropdown(
|
| 282 |
-
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
| 283 |
-
label="Imatrix Quantization Method",
|
| 284 |
-
info="GGML imatrix quants type",
|
| 285 |
-
value="IQ4_NL",
|
| 286 |
-
filterable=False,
|
| 287 |
-
visible=False
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
use_imatrix = gr.Checkbox(
|
| 291 |
-
value=False,
|
| 292 |
-
label="Use Imatrix Quantization",
|
| 293 |
-
info="Use importance matrix for quantization."
|
| 294 |
-
)
|
| 295 |
-
|
| 296 |
-
private_repo = gr.Checkbox(
|
| 297 |
-
value=False,
|
| 298 |
-
label="Private Repo",
|
| 299 |
-
info="Create a private repo under your username."
|
| 300 |
-
)
|
| 301 |
-
|
| 302 |
-
train_data_file = gr.File(
|
| 303 |
-
label="Training Data File",
|
| 304 |
-
file_types=["txt"],
|
| 305 |
-
visible=False
|
| 306 |
-
)
|
| 307 |
-
|
| 308 |
-
split_model = gr.Checkbox(
|
| 309 |
-
value=False,
|
| 310 |
-
label="Split Model",
|
| 311 |
-
info="Shard the model using gguf-split."
|
| 312 |
-
)
|
| 313 |
-
|
| 314 |
-
split_max_tensors = gr.Number(
|
| 315 |
-
value=256,
|
| 316 |
-
label="Max Tensors per File",
|
| 317 |
-
info="Maximum number of tensors per file when splitting model.",
|
| 318 |
-
visible=False
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
-
split_max_size = gr.Textbox(
|
| 322 |
-
label="Max File Size",
|
| 323 |
-
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
| 324 |
-
visible=False
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
def update_visibility(use_imatrix):
|
| 328 |
-
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
| 329 |
-
|
| 330 |
-
use_imatrix.change(
|
| 331 |
-
fn=update_visibility,
|
| 332 |
-
inputs=use_imatrix,
|
| 333 |
-
outputs=[q_method, imatrix_q_method, train_data_file]
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
iface = gr.Interface(
|
| 337 |
-
fn=process_model,
|
| 338 |
-
inputs=[
|
| 339 |
-
model_id,
|
| 340 |
-
q_method,
|
| 341 |
-
use_imatrix,
|
| 342 |
-
imatrix_q_method,
|
| 343 |
-
private_repo,
|
| 344 |
-
train_data_file,
|
| 345 |
-
split_model,
|
| 346 |
-
split_max_tensors,
|
| 347 |
-
split_max_size,
|
| 348 |
-
],
|
| 349 |
-
outputs=[
|
| 350 |
-
gr.Markdown(label="output"),
|
| 351 |
-
gr.Image(show_label=False),
|
| 352 |
-
],
|
| 353 |
-
title="Create your own GGUF Quants, blazingly fast ⚡!",
|
| 354 |
-
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
|
| 355 |
-
api_name=False
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
def update_split_visibility(split_model):
|
| 359 |
-
return gr.update(visible=split_model), gr.update(visible=split_model)
|
| 360 |
-
|
| 361 |
-
split_model.change(
|
| 362 |
-
fn=update_split_visibility,
|
| 363 |
-
inputs=split_model,
|
| 364 |
-
outputs=[split_max_tensors, split_max_size]
|
| 365 |
-
)
|
| 366 |
-
|
| 367 |
-
def restart_space():
|
| 368 |
-
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
| 369 |
-
|
| 370 |
-
scheduler = BackgroundScheduler()
|
| 371 |
-
scheduler.add_job(restart_space, "interval", seconds=21600)
|
| 372 |
-
scheduler.start()
|
| 373 |
-
|
| 374 |
-
# Launch the interface
|
| 375 |
-
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start.sh.bak
DELETED
|
@@ -1,5 +0,0 @@
|
|
| 1 |
-
cd llama.cpp
|
| 2 |
-
make -j quantize gguf-split imatrix
|
| 3 |
-
|
| 4 |
-
cd ..
|
| 5 |
-
python app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|