File size: 13,932 Bytes
424a951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""

Intelligent Tokenizer v6.0 - Working Demo for Hugging Face Spaces

์‹ค์ œ ์ž‘๋™ํ•˜๋Š” ๋ฐ๋ชจ - ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์—†์Œ

"""

import gradio as gr
import torch
import sys
import io
from pathlib import Path
import json
import time

# UTF-8 ์„ค์ •
if sys.stdout.encoding != 'utf-8':
    sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
    sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')

# Add path
sys.path.append(str(Path(__file__).parent))

# Import actual modules
from core.boundary_aware_model import BoundaryAwareTokenizerModel
from src.core.byte_tokenizer_v6 import ByteTokenizerV6

# Device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class IntelligentTokenizerDemo:
    def __init__(self):
        """Initialize the actual model"""
        self.device = device
        self.tokenizer = ByteTokenizerV6()
        self.model = None
        self.load_model()

    def load_model(self):
        """Load the actual trained model"""
        try:
            # Try loading from pytorch_model.bin first (extracted weights)
            model_path = Path("pytorch_model.bin")
            if not model_path.exists():
                # Fallback to checkpoint
                model_path = Path("checkpoints/latest_checkpoint.pt")

            if model_path.exists():
                print(f"Loading model from {model_path}...")
                checkpoint = torch.load(model_path, map_location=self.device, weights_only=False)

                # Get model config
                if 'model_config' in checkpoint:
                    model_config = checkpoint['model_config']
                else:
                    # Load from config.json
                    with open("config.json", "r") as f:
                        config = json.load(f)
                    model_config = {
                        'vocab_size': config['vocab_size'],
                        'hidden_dim': config.get('decoder_hidden', 768),
                        'num_heads': config['num_heads'],
                        'num_encoder_layers': 5,
                        'num_decoder_layers': config['num_decoder_layers'],
                        'dropout': config['dropout']
                    }

                # Initialize model
                self.model = BoundaryAwareTokenizerModel(**model_config)

                # Load weights
                if 'model_state_dict' in checkpoint:
                    self.model.load_state_dict(checkpoint['model_state_dict'])
                else:
                    self.model.load_state_dict(checkpoint)

                self.model = self.model.to(self.device)
                self.model.eval()
                print("Model loaded successfully!")

            else:
                print("Warning: No model checkpoint found, using untrained model")
                # Initialize untrained model for testing
                model_config = {
                    'vocab_size': 260,
                    'hidden_dim': 768,
                    'num_heads': 8,
                    'num_encoder_layers': 5,
                    'num_decoder_layers': 6,
                    'dropout': 0.1
                }
                self.model = BoundaryAwareTokenizerModel(**model_config)
                self.model = self.model.to(self.device)
                self.model.eval()

        except Exception as e:
            print(f"Error loading model: {e}")
            raise

    def embed_text(self, text):
        """์‹ค์ œ ์ž„๋ฒ ๋”ฉ ์ƒ์„ฑ"""
        if not text:
            return None, "Please enter text"

        try:
            # Encode text
            encoded = self.tokenizer.encode(text)
            byte_ids = encoded['input_ids']

            # Truncate if too long
            if len(byte_ids) > 256:
                byte_ids = byte_ids[:256]
                byte_ids[-1] = self.tokenizer.EOS

            # Prepare tensors
            input_ids = torch.tensor([byte_ids], device=self.device)
            attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device)

            # Generate embeddings
            with torch.no_grad():
                encoder_outputs = self.model.encoder(input_ids, attention_mask)
                embeddings = encoder_outputs['last_hidden_state']

            # Statistics
            original_bytes = len(text.encode('utf-8'))
            compressed_tokens = embeddings.shape[1]
            compression_ratio = original_bytes / compressed_tokens if compressed_tokens > 0 else 0

            result = f"""โœ… **Embedding Generated Successfully**



**Input Text:** {text[:100]}{'...' if len(text) > 100 else ''}

**Original Size:** {original_bytes} bytes

**Compressed Size:** {compressed_tokens} tokens

**Compression Ratio:** {compression_ratio:.2f}x

**Embedding Shape:** {list(embeddings.shape)}

**Device:** {self.device}



**First 10 values:** {embeddings[0, 0, :10].cpu().numpy().tolist()}

"""
            return embeddings, result

        except Exception as e:
            return None, f"Error: {str(e)}"

    def restore_text(self, text):
        """์‹ค์ œ ๋ณต์› ํ…Œ์ŠคํŠธ"""
        if not text:
            return "Please enter text"

        try:
            # Encode text
            encoded = self.tokenizer.encode(text)
            byte_ids = encoded['input_ids']

            # Truncate if needed
            if len(byte_ids) > 256:
                byte_ids = byte_ids[:256]
                byte_ids[-1] = self.tokenizer.EOS
                truncated = True
            else:
                truncated = False

            if len(byte_ids) <= 1:
                return "Text too short for restoration test"

            # Prepare tensors
            input_ids = torch.tensor([byte_ids], device=self.device)
            attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device)

            # Teacher forcing restoration
            with torch.no_grad():
                decoder_input = input_ids[:, :-1]
                labels = input_ids[:, 1:]

                outputs = self.model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    decoder_input_ids=decoder_input,
                    labels=labels,
                    use_cross_attention=True
                )

                # Get predictions
                predictions = torch.argmax(outputs['logits'], dim=-1)
                accuracy = (predictions == labels).float().mean().item()

                # Decode predictions
                pred_list = predictions[0].cpu().tolist()
                full_sequence = [self.tokenizer.BOS] + pred_list

                # Convert to text
                filtered = [b for b in full_sequence if 0 <= b < 256]
                if filtered:
                    restored_bytes = bytes(filtered)
                    restored_text = restored_bytes.decode('utf-8', errors='ignore')
                else:
                    restored_text = "[Unable to restore]"

            result = f"""โœ… **Restoration Test Complete**



**Original Text:** {text[:100]}{'...' if len(text) > 100 else ''}

**Restored Text:** {restored_text[:100]}{'...' if len(restored_text) > 100 else ''}

**Accuracy:** {accuracy:.1%}

**Bytes Processed:** {len(byte_ids)}

{'**Note:** Text was truncated to 256 bytes' if truncated else ''}



**Status:** {'Perfect Match! โœจ' if accuracy > 0.95 else 'Good Match' if accuracy > 0.8 else 'Partial Match'}

"""
            return result

        except Exception as e:
            return f"Error: {str(e)}"

    def compress_stats(self, text):
        """์••์ถ• ํ†ต๊ณ„ ๋ถ„์„"""
        if not text:
            return "Please enter text"

        try:
            lines = text.strip().split('\n')
            results = []

            for line in lines[:10]:  # Limit to 10 lines
                if not line.strip():
                    continue

                # Get compression stats
                encoded = self.tokenizer.encode(line)
                byte_ids = encoded['input_ids']

                if len(byte_ids) > 256:
                    byte_ids = byte_ids[:256]

                input_ids = torch.tensor([byte_ids], device=self.device)
                attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device)

                with torch.no_grad():
                    encoder_outputs = self.model.encoder(input_ids, attention_mask)
                    compressed_size = encoder_outputs['last_hidden_state'].shape[1]

                original_size = len(line.encode('utf-8'))
                ratio = original_size / compressed_size if compressed_size > 0 else 0

                results.append({
                    'text': line[:50] + '...' if len(line) > 50 else line,
                    'original': original_size,
                    'compressed': compressed_size,
                    'ratio': ratio
                })

            # Format results
            output = "**Compression Analysis Results**\n\n"
            output += "| Text | Original | Compressed | Ratio |\n"
            output += "|------|----------|------------|-------|\n"

            for r in results:
                output += f"| {r['text']} | {r['original']} bytes | {r['compressed']} tokens | {r['ratio']:.2f}x |\n"

            # Average stats
            if results:
                avg_ratio = sum(r['ratio'] for r in results) / len(results)
                total_original = sum(r['original'] for r in results)
                total_compressed = sum(r['compressed'] for r in results)

                output += f"\n**Summary:**\n"
                output += f"- Average Compression: {avg_ratio:.2f}x\n"
                output += f"- Total Original: {total_original} bytes\n"
                output += f"- Total Compressed: {total_compressed} tokens\n"
                output += f"- Overall Ratio: {total_original/total_compressed if total_compressed > 0 else 0:.2f}x\n"

            return output

        except Exception as e:
            return f"Error: {str(e)}"

# Initialize demo
print("Initializing Intelligent Tokenizer Demo...")
demo = IntelligentTokenizerDemo()

# Gradio Interface
with gr.Blocks(title="Intelligent Tokenizer v6.0", theme=gr.themes.Base()) as app:
    gr.Markdown("""

    # ๐Ÿš€ Intelligent Tokenizer v6.0 - Live Demo



    **World's First Pure Learning-Based Byte-Level Tokenizer**

    - No vocabulary files, no language rules - just intelligence!

    - 260 fixed vocab (256 bytes + 4 special tokens)

    - Works with ANY language/script/emoji

    """)

    with gr.Tab("๐Ÿ”ค Embedding"):
        with gr.Row():
            with gr.Column():
                embed_input = gr.Textbox(
                    label="Input Text",
                    placeholder="Enter any text in any language...",
                    lines=3
                )
                embed_btn = gr.Button("Generate Embedding", variant="primary")

            with gr.Column():
                embed_output = gr.Markdown(label="Result")

        embed_btn.click(
            lambda x: demo.embed_text(x)[1],
            inputs=embed_input,
            outputs=embed_output
        )

    with gr.Tab("๐Ÿ”„ Restoration"):
        with gr.Row():
            with gr.Column():
                restore_input = gr.Textbox(
                    label="Input Text",
                    placeholder="Enter text to test restoration...",
                    lines=3
                )
                restore_btn = gr.Button("Test Restoration", variant="primary")

            with gr.Column():
                restore_output = gr.Markdown(label="Result")

        restore_btn.click(
            demo.restore_text,
            inputs=restore_input,
            outputs=restore_output
        )

    with gr.Tab("๐Ÿ“Š Compression Analysis"):
        with gr.Row():
            with gr.Column():
                compress_input = gr.Textbox(
                    label="Input Text (one item per line)",
                    placeholder="Enter multiple texts, one per line...",
                    lines=5
                )
                compress_btn = gr.Button("Analyze Compression", variant="primary")

            with gr.Column():
                compress_output = gr.Markdown(label="Analysis")

        compress_btn.click(
            demo.compress_stats,
            inputs=compress_input,
            outputs=compress_output
        )

    with gr.Tab("โ„น๏ธ About"):
        gr.Markdown("""

        ## About Intelligent Tokenizer v6.0



        ### Key Features:

        - **Pure Learning-Based**: No predefined rules or vocabularies

        - **Universal Coverage**: Works with all 204+ languages equally

        - **Compression**: 2-3x currently, targeting 5-10x

        - **Real Model**: This demo uses the actual trained model (1.2GB)



        ### Architecture:

        - Encoder: 5-layer transformer (512โ†’768 dims)

        - Decoder: 6-layer transformer (768 hidden)

        - Total: ~274M parameters

        - Training: 23 epochs on multilingual data



        ### Development:

        - Solo developer, 4 months development

        - Trained on personal RTX 3060

        - No prior AI experience



        ### Links:

        - [GitHub Repository](https://github.com/ggunio/intelligent-tokenizer)

        - [Hugging Face Model](https://huggingface.co/ggunio/intelligent-tokenizer-v6)

        """)

if __name__ == "__main__":
    print(f"Running on device: {device}")
    print("Launching Gradio app...")
    app.launch()