File size: 26,887 Bytes
c65503b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
"""

Boundary-Aware Intelligent Tokenizer Model

๋ฐ”์ดํŠธ-๋ฌธ์ž ๊ด€๊ณ„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๋ชจ๋ธ

"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Optional, Tuple
import math

# Import necessary components from unified_model
from .unified_model import ByteEncoder, TransformerDecoder, CrossAttention, PositionalEncoding


class BoundaryAwareEncoder(nn.Module):
    """

    ๋ฐ”์ดํŠธ-๋ฌธ์ž ๊ฒฝ๊ณ„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ์ธ์ฝ”๋”

    """
    
    def __init__(

        self,

        vocab_size: int = 260,

        hidden_dims: List[int] = [512, 512, 640, 768, 768],  # 384โ†’512๋กœ ์ฆ๊ฐ€

        num_heads: int = 8,

        dropout: float = 0.1,

        max_seq_len: int = 512

    ):
        super().__init__()
        
        # 1. ๋ฐ”์ดํŠธ ์ž„๋ฒ ๋”ฉ
        self.byte_embedding = nn.Embedding(vocab_size, hidden_dims[0])
        
        # 2. ๊ฒฝ๊ณ„ ์ž„๋ฒ ๋”ฉ (START, CONT, END, SPECIAL) - ๋” ํฐ ์ฐจ์›
        self.boundary_embedding = nn.Embedding(4, 128)  # ๊ณ ์ • 128์ฐจ์›
        
        # 3. ๋ฌธ์ž ํƒ€์ž… ์ž„๋ฒ ๋”ฉ (ASCII, Korean, Chinese, etc.) - ๋” ํฐ ์ฐจ์›  
        self.char_type_embedding = nn.Embedding(14, 128)  # ๊ณ ์ • 128์ฐจ์›
        
        # 4. ๋ฐ”์ดํŠธ ์นด์šดํŠธ ์ž„๋ฒ ๋”ฉ (1-4 bytes) - UTF-8 ํŒจํ„ด ์ค‘์š”
        self.byte_count_embedding = nn.Embedding(5, 128)  # ๊ณ ์ • 128์ฐจ์›
        
        # 5. ๋ฌธ์ž ์ธ๋ฑ์Šค ์ž„๋ฒ ๋”ฉ (relative position within char)
        self.char_position_embedding = nn.Embedding(4, 128)  # ๊ณ ์ • 128์ฐจ์›
        
        # ํ†ตํ•ฉ projection (๋ฐ”์ดํŠธ ์ž„๋ฒ ๋”ฉ 512 + ๊ตฌ์กฐ ์ž„๋ฒ ๋”ฉ 512 = 1024)
        structural_dim = 128 * 4  # boundary(128) + char_type(128) + byte_count(128) + char_pos(128)
        self.input_projection = nn.Linear(hidden_dims[0] + structural_dim, hidden_dims[0])
        
        # Positional encoding
        self.pos_encoding = PositionalEncoding(hidden_dims[0], max_seq_len, dropout)
        
        # Transformer layers (๊ธฐ์กด ๊ตฌ์กฐ ์žฌ์‚ฌ์šฉ)
        self.layers = nn.ModuleList()
        for i in range(len(hidden_dims)):
            input_dim = hidden_dims[i-1] if i > 0 else hidden_dims[0]
            output_dim = hidden_dims[i]
            
            if input_dim != output_dim:
                proj = nn.Linear(input_dim, output_dim)
            else:
                proj = None
            
            layer = nn.TransformerEncoderLayer(
                d_model=output_dim,
                nhead=num_heads,
                dim_feedforward=output_dim * 4,
                dropout=dropout,
                activation='gelu',
                batch_first=True,
                norm_first=True
            )
            
            self.layers.append(nn.ModuleDict({
                'projection': proj,
                'transformer': layer,
                'norm': nn.LayerNorm(output_dim)
            }))
        
        # Hierarchical Merging Components (์ƒˆ๋กœ ์ถ”๊ฐ€)
        # ๊ฐ ๋ ˆ์ด์–ด๋งˆ๋‹ค ๋ณ‘ํ•ฉ ๋ชจ๋“ˆ ์ถ”๊ฐ€ - ํŠธ๋žœ์Šคํฌ๋จธ๊ฐ€ ์Šค์Šค๋กœ ๊ฒฐ์ •
        self.merging_modules = nn.ModuleList()
        
        for i in range(len(hidden_dims)):
            dim = hidden_dims[i]
            # Learned merging decision - no fixed ratios!
            merge_module = nn.ModuleDict({
                # ๊ฒฝ๊ณ„ ํ•™์Šต์„ ์œ„ํ•œ ๋ชจ๋“ˆ
                'boundary_detector': nn.Linear(dim, 3),  # START, CONT, END
                'merge_attention': nn.MultiheadAttention(dim, num_heads//2, dropout, batch_first=True),
                'merge_gate': nn.Sequential(
                    nn.Linear(dim * 2, dim),
                    nn.ReLU(),
                    nn.Linear(dim, 1)
                ),  # ๋ณ‘ํ•ฉ ๊ฒฐ์ • (ํ•™์Šต์œผ๋กœ ๊ฒฐ์ •)
                'merge_proj': nn.Linear(dim * 2, dim),  # ๋ณ‘ํ•ฉ ํ›„ ํ”„๋กœ์ ์…˜
            })
            self.merging_modules.append(merge_module)
        
        # ๊ฒฝ๊ณ„ ์˜ˆ์ธก ํ—ค๋“œ
        self.boundary_predictor = nn.Linear(hidden_dims[-1], 4)
        
        # ๋ฌธ์ž ํƒ€์ž… ์˜ˆ์ธก ํ—ค๋“œ
        self.char_type_predictor = nn.Linear(hidden_dims[-1], 14)
        
    def forward(

        self,

        input_ids: torch.Tensor,

        boundary_labels: Optional[torch.Tensor] = None,

        char_types: Optional[torch.Tensor] = None,

        byte_counts: Optional[torch.Tensor] = None,

        char_indices: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None

    ) -> Dict[str, torch.Tensor]:
        
        batch_size, seq_len = input_ids.shape
        device = input_ids.device
        
        # 1. ๋ฐ”์ดํŠธ ์ž„๋ฒ ๋”ฉ
        byte_emb = self.byte_embedding(input_ids)  # [B, S, D]
        
        # 2. ๊ฒฝ๊ณ„ ์ •๋ณด ์ž„๋ฒ ๋”ฉ (ํ•™์Šต ์‹œ์—๋งŒ)
        if boundary_labels is not None:
            boundary_emb = self.boundary_embedding(boundary_labels)  # [B, S, D/4]
        else:
            # ์ถ”๋ก  ์‹œ: ๋ฐ”์ดํŠธ ๊ฐ’์œผ๋กœ๋ถ€ํ„ฐ ๊ฒฝ๊ณ„ ์ถ”์ •
            # UTF-8 ํŒจํ„ด: 
            # 0xxxxxxx (0-127): ASCII (START)
            # 110xxxxx (192-223): 2-byte start
            # 1110xxxx (224-239): 3-byte start
            # 11110xxx (240-247): 4-byte start
            # 10xxxxxx (128-191): continuation
            
            estimated_boundaries = torch.zeros_like(input_ids)
            
            # ASCII (0-127)
            ascii_mask = input_ids < 128
            estimated_boundaries[ascii_mask] = 1  # START
            
            # Continuation bytes (128-191)
            cont_mask = (input_ids >= 128) & (input_ids < 192)
            estimated_boundaries[cont_mask] = 0  # CONT
            
            # Multi-byte starters
            mb_start_mask = input_ids >= 192
            estimated_boundaries[mb_start_mask] = 1  # START
            
            boundary_emb = self.boundary_embedding(estimated_boundaries)
        
        # 3. ๋ฌธ์ž ํƒ€์ž… ์ž„๋ฒ ๋”ฉ
        if char_types is not None:
            char_type_emb = self.char_type_embedding(char_types)
        else:
            # ์ถ”๋ก  ์‹œ: ๊ธฐ๋ณธ๊ฐ’ ์‚ฌ์šฉ
            char_type_emb = self.char_type_embedding(torch.zeros_like(input_ids))
        
        # 4. ๋ฐ”์ดํŠธ ์นด์šดํŠธ ์ž„๋ฒ ๋”ฉ
        if byte_counts is not None:
            byte_count_emb = self.byte_count_embedding(torch.clamp(byte_counts, 0, 4))
        else:
            # ์ถ”๋ก  ์‹œ: ๋ฐ”์ดํŠธ ํŒจํ„ด์œผ๋กœ ์ถ”์ •
            estimated_counts = torch.ones_like(input_ids)
            # UTF-8 ํŒจํ„ด์œผ๋กœ ๋ฉ€ํ‹ฐ๋ฐ”์ดํŠธ ๊ธธ์ด ์ถ”์ •
            estimated_counts[input_ids >= 240] = 4  # 4-byte
            estimated_counts[(input_ids >= 224) & (input_ids < 240)] = 3  # 3-byte
            estimated_counts[(input_ids >= 192) & (input_ids < 224)] = 2  # 2-byte
            byte_count_emb = self.byte_count_embedding(estimated_counts)
        
        # 5. ๋ฌธ์ž ๋‚ด ์œ„์น˜ ์ž„๋ฒ ๋”ฉ
        if char_indices is not None:
            # ๊ฐ™์€ ๋ฌธ์ž ๋‚ด์—์„œ์˜ ์ƒ๋Œ€ ์œ„์น˜ ๊ณ„์‚ฐ
            char_positions = torch.zeros_like(char_indices)
            for b in range(batch_size):
                current_char = -1
                position = 0
                for i in range(seq_len):
                    if char_indices[b, i] != current_char:
                        current_char = char_indices[b, i]
                        position = 0
                    else:
                        position += 1
                    char_positions[b, i] = min(position, 3)
            
            char_pos_emb = self.char_position_embedding(char_positions)
        else:
            char_pos_emb = self.char_position_embedding(torch.zeros_like(input_ids))
        
        # 6. ๋ชจ๋“  ์ž„๋ฒ ๋”ฉ ํ†ตํ•ฉ
        # ๋ฐ”์ดํŠธ ์ž„๋ฒ ๋”ฉ + ๊ตฌ์กฐ ์ •๋ณด
        structural_emb = torch.cat([
            boundary_emb,
            char_type_emb,
            byte_count_emb,
            char_pos_emb
        ], dim=-1)  # [B, S, D]
        
        combined_emb = torch.cat([byte_emb, structural_emb], dim=-1)  # [B, S, 2*D]
        
        # Projection to original dimension
        x = self.input_projection(combined_emb)  # [B, S, D]
        
        # Positional encoding
        x = self.pos_encoding(x)
        
        # Transformer layers with hierarchical merging
        all_hidden_states = []
        boundary_predictions = []
        char_type_predictions = []
        merge_info = []  # ๋ณ‘ํ•ฉ ์ •๋ณด ์ €์žฅ
        
        for i, layer_dict in enumerate(self.layers):
            # Project if needed
            if layer_dict['projection'] is not None:
                x = layer_dict['projection'](x)
            
            # Transformer layer
            if attention_mask is not None:
                # Ensure mask matches current sequence length
                current_seq_len = x.size(1)
                if attention_mask.size(1) != current_seq_len:
                    # Adjust mask to match current sequence length after merging
                    key_padding_mask = torch.zeros(x.size(0), current_seq_len, dtype=torch.bool, device=x.device)
                    # Copy valid mask values
                    valid_len = min(attention_mask.size(1), current_seq_len)
                    key_padding_mask[:, :valid_len] = (attention_mask[:, :valid_len] == 0)
                else:
                    key_padding_mask = (attention_mask == 0)
                x = layer_dict['transformer'](x, src_key_padding_mask=key_padding_mask)
            else:
                x = layer_dict['transformer'](x)
            
            x = layer_dict['norm'](x)
            
            # Store hidden state BEFORE merging (for proper gradient flow)
            all_hidden_states.append(x.clone())
            
            # Hierarchical Progressive Merging - ๊ณ„์ธต์  ์ ์ง„์  ๋ณ‘ํ•ฉ
            # Layer๋ณ„๋กœ ๋‹ค๋ฅธ ์ˆ˜์ค€์˜ ๋ณ‘ํ•ฉ ํ•™์Šต (๋ฐ”์ดํŠธโ†’๋ฌธ์žโ†’๋‹จ์–ดโ†’์–ด์ ˆ)
            if i < len(self.merging_modules) and self.merging_modules[i] is not None:
                merge_module = self.merging_modules[i]
                batch_size, seq_len, hidden_dim = x.shape
                
                # Skip if already compressed too much
                if seq_len < 4:
                    continue
                
                # Layer 0: UTF-8 ๊ฒฝ๊ณ„ ๊ธฐ๋ฐ˜ ๋ณ‘ํ•ฉ (๋ฐ”์ดํŠธ โ†’ ๋ฌธ์ž)
                if i == 0 and input_ids is not None:
                    # UTF-8 ๊ฒฝ๊ณ„ ๊ฐ์ง€๋ฅผ ์‚ฌ์šฉํ•œ ํ™•์‹คํ•œ ๋ณ‘ํ•ฉ
                    merge_decisions = torch.zeros(batch_size, seq_len - 1, device=x.device)
                    
                    for b in range(batch_size):
                        for idx in range(seq_len - 1):
                            if idx < input_ids.shape[1] - 1:
                                current_byte = input_ids[b, idx].item()
                                next_byte = input_ids[b, idx + 1].item()
                                
                                # Continuation byte (10xxxxxx) should merge with previous
                                if 128 <= next_byte < 192:  # Next is continuation
                                    merge_decisions[b, idx] = 1.0  # Merge with next
                                # Special tokens don't merge
                                elif current_byte >= 256 or next_byte >= 256:
                                    merge_decisions[b, idx] = 0.0
                    
                    # Also calculate merge_probs for logging
                    x_pairs = torch.cat([x[:, :-1], x[:, 1:]], dim=-1)
                    merge_scores = merge_module['merge_gate'](x_pairs).squeeze(-1)
                    merge_probs = torch.sigmoid(merge_scores)
                    
                    # Use UTF-8 based decisions for layer 0
                    layer_merge_threshold = 0.5  # Not used but logged
                    
                else:
                    # Other layers: ํ•™์Šต ๊ธฐ๋ฐ˜ ๋ณ‘ํ•ฉ
                    # 1. ํŠธ๋žœ์Šคํฌ๋จธ๊ฐ€ ๋ณ‘ํ•ฉ ๊ฒฝ๊ณ„๋ฅผ ํ•™์Šต
                    # ์ธ์ ‘ ํ† ํฐ ์Œ์˜ ๋ณ‘ํ•ฉ ์ ์ˆ˜ ๊ณ„์‚ฐ
                    x_pairs = torch.cat([x[:, :-1], x[:, 1:]], dim=-1)  # [B, S-1, 2*D]
                    merge_scores = merge_module['merge_gate'](x_pairs).squeeze(-1)  # [B, S-1]
                    merge_probs = torch.sigmoid(merge_scores)  # 0~1 ํ™•๋ฅ 
                    
                    # 3. ๊ณ„์ธต๋ณ„ ๋ณ‘ํ•ฉ ๊ฐ•๋„ ์„ค์ • (ํ•™์Šต ๊ฐ€๋Šฅ)
                    # ์ค‘๊ฐ„ ๋ ˆ์ด์–ด: ์ค‘๊ฐ„ ๋ณ‘ํ•ฉ๋ฅ  (๋ฌธ์žโ†’๋‹จ์–ด)  
                    # ์ตœ์ข… ๋ ˆ์ด์–ด: ๋†’์€ ๋ณ‘ํ•ฉ๋ฅ  (๋‹จ์–ดโ†’์–ด์ ˆ)
                    layer_merge_threshold = 0.7 + (i / len(self.merging_modules)) * 0.2  # 0.7 โ†’ 0.9
                    
                    # 4. ๋ณ‘ํ•ฉ ๊ฒฐ์ • (ํ•™์Šต๋œ ํ™•๋ฅ  ๊ธฐ๋ฐ˜)
                    merge_decisions = (merge_probs > layer_merge_threshold).float()
                
                # 2. Self-attention์œผ๋กœ ์ „์—ญ ์ปจํ…์ŠคํŠธ ํŒŒ์•…
                attn_output, attn_weights = merge_module['merge_attention'](x, x, x)
                
                # 5. ์‹ค์ œ ๋ณ‘ํ•ฉ ์ˆ˜ํ–‰ (GPU ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ)
                # ๋ณ‘ํ•ฉ ๋งˆ์Šคํฌ ์ƒ์„ฑ
                merged_indices = []
                merged_x = []
                new_mask = []
                
                # Efficient parallel merging using cumsum trick
                # merge_decisions๊ฐ€ 1์ธ ์œ„์น˜์—์„œ ๋‹ค์Œ ํ† ํฐ๊ณผ ๋ณ‘ํ•ฉ
                # group_ids๋Š” seq_len ํฌ๊ธฐ์—ฌ์•ผ ํ•จ (merge_decisions๋Š” seq_len-1)
                group_ids = torch.zeros(batch_size, seq_len, device=x.device)
                group_ids[:, 0] = 0
                group_ids[:, 1:] = 1 - merge_decisions  # ์ƒˆ ๊ทธ๋ฃน ์‹œ์ž‘ ์œ„์น˜
                group_ids = group_ids.cumsum(dim=1).long()  # ๊ทธ๋ฃน ID ํ• ๋‹น
                
                # ๊ฐ ๊ทธ๋ฃน์˜ ์ตœ๋Œ€ ID ์ฐพ๊ธฐ
                max_groups = group_ids.max(dim=1)[0] + 1  # ๊ฐ ๋ฐฐ์น˜์˜ ๊ทธ๋ฃน ์ˆ˜
                max_group_size = max_groups.max().item()
                
                # ๊ทธ๋ฃน๋ณ„ aggregation (gradient-safe ๋ฐฉ๋ฒ•)
                # Use index_add instead of scatter for better gradient flow
                new_x_list = []
                new_mask_list = []
                
                for b in range(batch_size):
                    # Create mapping from old to new indices
                    unique_groups, inverse_indices = torch.unique(group_ids[b], return_inverse=True)
                    num_groups = len(unique_groups)
                    
                    # Initialize new tensor for this batch
                    batch_new_x = torch.zeros(num_groups, hidden_dim, device=x.device)
                    group_counts = torch.zeros(num_groups, device=x.device)
                    
                    # Sum tokens belonging to same group
                    batch_new_x = batch_new_x.index_add(0, inverse_indices, x[b])
                    group_counts = group_counts.index_add(0, inverse_indices, torch.ones(seq_len, device=x.device))
                    
                    # Average
                    batch_new_x = batch_new_x / group_counts.unsqueeze(-1).clamp(min=1)
                    
                    new_x_list.append(batch_new_x)
                    new_mask_list.append(torch.ones(num_groups, device=x.device))
                
                # Pad to same size for batching
                max_new_len = max(t.size(0) for t in new_x_list)
                padded_x_list = []
                padded_mask_list = []
                
                for batch_x, batch_mask in zip(new_x_list, new_mask_list):
                    pad_len = max_new_len - batch_x.size(0)
                    if pad_len > 0:
                        batch_x = torch.cat([batch_x, torch.zeros(pad_len, hidden_dim, device=x.device)], dim=0)
                        batch_mask = torch.cat([batch_mask, torch.zeros(pad_len, device=x.device)], dim=0)
                    padded_x_list.append(batch_x)
                    padded_mask_list.append(batch_mask)
                
                new_x = torch.stack(padded_x_list)
                valid_mask = torch.stack(padded_mask_list)
                
                # Trim to actual size (important for gradient flow)
                actual_len = valid_mask.sum(dim=1).max().long().item()
                new_x = new_x[:, :actual_len]
                valid_mask = valid_mask[:, :actual_len]
                
                # Attention ์ •๋ณด ์ถ”๊ฐ€ (์„ ํƒ์ )
                new_x = new_x + attn_output.mean(dim=1, keepdim=True).expand(-1, actual_len, -1) * 0.1
                
                # Update x and attention_mask
                x = new_x
                attention_mask = valid_mask
                
                # Note: DO NOT re-apply positional encoding after merging
                # The transformer already learned position-aware representations
                
                # Store merge mapping for cross-attention and decoder
                # ์›๋ณธ ์œ„์น˜ โ†’ ๋ณ‘ํ•ฉ ํ›„ ์œ„์น˜ ๋งคํ•‘ ์ €์žฅ (๋””์ฝ”๋” ๋ณต์›์šฉ)
                merge_mapping = {
                    'original_positions': torch.arange(seq_len, device=x.device),
                    'merged_groups': group_ids,
                    'group_sizes': None  # No longer using counts
                }
                
                # ์ •๋ณด ๊ธฐ๋ก (actual_len already computed above)
                merge_info.append({
                    'layer': i,
                    'original_len': seq_len,
                    'merged_len': actual_len,
                    'compression_ratio': seq_len / max(actual_len, 1),
                    'merge_threshold': layer_merge_threshold,
                    'avg_merge_prob': merge_probs.mean().item(),
                    'merge_mapping': merge_mapping  # ๋ณต์›์„ ์œ„ํ•œ ๋งคํ•‘ ์ •๋ณด
                })
            
            # ์ค‘๊ฐ„ ์ธต์—์„œ๋„ ๊ฒฝ๊ณ„ ์˜ˆ์ธก (auxiliary loss) - ๋งˆ์ง€๋ง‰ ์ธต์—์„œ๋งŒ
            if i == len(self.layers) - 1:  # ๋งˆ์ง€๋ง‰ ์ธต์—์„œ๋งŒ ์˜ˆ์ธก
                boundary_pred = self.boundary_predictor(x)
                char_type_pred = self.char_type_predictor(x)
                boundary_predictions.append(boundary_pred)
                char_type_predictions.append(char_type_pred)
        
        # Pool for sequence representation
        if attention_mask is not None:
            mask = attention_mask.unsqueeze(-1)
            pooled = (x * mask).sum(dim=1) / mask.sum(dim=1).clamp(min=1e-9)
        else:
            pooled = x.mean(dim=1)
        
        return {
            'last_hidden_state': x,
            'pooled_output': pooled,
            'all_hidden_states': all_hidden_states,
            'boundary_predictions': boundary_predictions,  # ๊ฒฝ๊ณ„ ์˜ˆ์ธก (์—ฌ๋Ÿฌ ์ธต)
            'char_type_predictions': char_type_predictions,  # ๋ฌธ์ž ํƒ€์ž… ์˜ˆ์ธก
            'boundary_logits': self.boundary_predictor(x),  # ์ตœ์ข… ๊ฒฝ๊ณ„ ์˜ˆ์ธก
            'char_type_logits': self.char_type_predictor(x),  # ์ตœ์ข… ๋ฌธ์ž ํƒ€์ž… ์˜ˆ์ธก
            'merge_info': merge_info,  # ๋ณ‘ํ•ฉ ์ •๋ณด (์ƒˆ๋กœ ์ถ”๊ฐ€)
            'attention_mask': attention_mask  # ์—…๋ฐ์ดํŠธ๋œ ๋งˆ์Šคํฌ ๋ฐ˜ํ™˜
        }


class BoundaryAwareTokenizerModel(nn.Module):
    """

    ๋ฐ”์ดํŠธ-๋ฌธ์ž ๊ด€๊ณ„๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ํ†ตํ•ฉ ๋ชจ๋ธ

    """
    
    def __init__(

        self,

        vocab_size: int = 260,

        encoder_dims: List[int] = [512, 512, 640, 768, 768],  # 384โ†’512๋กœ ์ฆ๊ฐ€

        decoder_hidden: int = 768,

        num_heads: int = 8,

        num_decoder_layers: int = 6,

        dropout: float = 0.1,

        max_seq_len: int = 512

    ):
        super().__init__()
        
        # Boundary-aware encoder
        self.encoder = BoundaryAwareEncoder(
            vocab_size, encoder_dims, num_heads, dropout, max_seq_len
        )
        
        # Standard decoder (์žฌ์‚ฌ์šฉ)
        self.decoder = TransformerDecoder(
            vocab_size, decoder_hidden, num_heads, num_decoder_layers, dropout, max_seq_len
        )
        
        # Cross-attention (์žฌ์‚ฌ์šฉ)
        self.cross_attention = CrossAttention(encoder_dims[-1], num_heads, dropout)
        
    def forward(

        self,

        input_ids: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        boundary_labels: Optional[torch.Tensor] = None,

        char_types: Optional[torch.Tensor] = None,

        byte_counts: Optional[torch.Tensor] = None,

        char_indices: Optional[torch.Tensor] = None,

        decoder_input_ids: Optional[torch.Tensor] = None,

        labels: Optional[torch.Tensor] = None,

        use_cross_attention: bool = True

    ) -> Dict[str, torch.Tensor]:
        
        # 1. Boundary-aware encoding
        encoder_outputs = self.encoder(
            input_ids=input_ids,
            boundary_labels=boundary_labels,
            char_types=char_types,
            byte_counts=byte_counts,
            char_indices=char_indices,
            attention_mask=attention_mask
        )
        
        encoder_hidden = encoder_outputs['last_hidden_state']
        
        # 2. Decoding
        # Pass the updated attention_mask from encoder (after merging)
        encoder_mask = encoder_outputs.get('attention_mask', attention_mask)
        
        # Use input_ids as decoder_input_ids for teacher forcing if not provided
        if decoder_input_ids is None and input_ids is not None:
            decoder_input_ids = input_ids
        
        decoder_outputs = self.decoder(
            encoder_hidden,
            decoder_input_ids,
            encoder_mask  # Use encoder's updated mask
        )
        
        # 3. Cross-attention (optional)
        cross_attn_outputs = None
        relation_logits = None
        
        if use_cross_attention and decoder_outputs['hidden_states'] is not None:
            decoder_hidden = decoder_outputs['hidden_states']
            
            cross_attn_outputs = self.cross_attention(
                query=decoder_hidden,
                key=encoder_hidden,
                query_mask=None,
                key_mask=attention_mask
            )
            
            relation_logits = cross_attn_outputs['relation_logits']
            
            # Enhanced decoder with cross-attention
            enhanced_decoder = decoder_hidden + cross_attn_outputs['cross_attention']
            decoder_outputs['logits'] = self.decoder.output_projection(enhanced_decoder)
        
        # 4. Loss calculation
        total_loss = None
        if labels is not None:
            # Reconstruction loss
            loss_fct = nn.CrossEntropyLoss(ignore_index=256)  # PAD
            recon_loss = loss_fct(
                decoder_outputs['logits'].reshape(-1, decoder_outputs['logits'].size(-1)),
                labels.reshape(-1)
            )
            
            total_loss = recon_loss
            
            # Boundary prediction loss
            if boundary_labels is not None and 'boundary_logits' in encoder_outputs:
                boundary_logits = encoder_outputs['boundary_logits']
                # Check if dimensions match
                logits_size = boundary_logits.size(0) * boundary_logits.size(1)
                labels_size = boundary_labels.numel()
                
                if logits_size == labels_size:
                    boundary_loss_fct = nn.CrossEntropyLoss(ignore_index=3)  # special
                    boundary_loss = boundary_loss_fct(
                        boundary_logits.reshape(-1, 4),
                        boundary_labels.reshape(-1)
                    )
                    total_loss = total_loss + boundary_loss * 0.3
                # If encoder changed sequence length (due to merging), skip boundary loss
                # This is expected behavior when boundary-aware merging is active
            
            # Character type prediction loss
            if char_types is not None and 'char_type_logits' in encoder_outputs:
                char_type_logits = encoder_outputs['char_type_logits']
                # Check if dimensions match
                logits_size = char_type_logits.size(0) * char_type_logits.size(1)
                labels_size = char_types.numel()
                
                if logits_size == labels_size:
                    char_type_loss_fct = nn.CrossEntropyLoss(ignore_index=13)  # special
                    char_type_loss = char_type_loss_fct(
                        char_type_logits.reshape(-1, 14),
                        char_types.reshape(-1)
                    )
                    total_loss = total_loss + char_type_loss * 0.2
                # If encoder changed sequence length (due to merging), skip char type loss
            
            # Auxiliary losses from intermediate layers
            if encoder_outputs.get('boundary_predictions') and boundary_labels is not None:
                # boundary_loss_fct๋Š” ์œ„์—์„œ ์ •์˜๋œ ๊ฒฝ์šฐ์—๋งŒ ์‚ฌ์šฉ
                if 'boundary_loss_fct' in locals():
                    for boundary_pred in encoder_outputs['boundary_predictions']:
                        # Ensure batch sizes match
                        pred_batch_size = boundary_pred.size(0) * boundary_pred.size(1)
                        label_batch_size = boundary_labels.numel()
                        
                        if pred_batch_size == label_batch_size:
                            aux_boundary_loss = boundary_loss_fct(
                                boundary_pred.reshape(-1, 4),
                                boundary_labels.reshape(-1)
                            )
                            total_loss = total_loss + aux_boundary_loss * 0.1
                        else:
                            # Skip if dimensions don't match (different layer sizes)
                            continue
        
        return {
            'loss': total_loss,
            'logits': decoder_outputs['logits'],
            'encoder_hidden_states': encoder_hidden,
            'decoder_hidden_states': decoder_outputs['hidden_states'],
            'boundary_logits': encoder_outputs['boundary_logits'],
            'char_type_logits': encoder_outputs['char_type_logits'],
            'boundary_predictions': encoder_outputs.get('boundary_predictions'),
            'relation_logits': relation_logits,
            'cross_attention': cross_attn_outputs['cross_attention'] if cross_attn_outputs else None
        }