File size: 9,888 Bytes
c2e3f6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
"""
Byte-Level Tokenizer V6.1.2 - Compression-First Learning
No vocabulary, no language rules - just bytes
"""
import torch
from typing import List, Dict, Union, Optional
import numpy as np
class ByteTokenizerV6:
"""
Pure byte-level tokenizer
- No vocabulary needed (bytes are 0-255)
- No language-specific rules
- Model learns all patterns from data
"""
def __init__(self, max_seq_len: int = 64):
"""Initialize byte tokenizer"""
self.max_seq_len = max_seq_len
# Special tokens (beyond byte range 0-255)
self.PAD = 256
self.BOS = 257
self.EOS = 258
self.MASK = 259
# Total vocabulary size = 256 bytes + 4 special tokens
self.vocab_size = 260
print(f"Byte tokenizer initialized (vocab_size={self.vocab_size})")
def encode(self, text: str, add_special_tokens: bool = True) -> Dict:
"""
Encode text to byte IDs
Args:
text: Input text
add_special_tokens: Whether to add BOS/EOS
Returns:
dict with 'input_ids', 'attention_mask', 'length'
"""
# Convert text to UTF-8 bytes (pure bytes, no rules)
byte_sequence = list(text.encode('utf-8'))
# Truncate if necessary
max_len = self.max_seq_len - 2 if add_special_tokens else self.max_seq_len
if len(byte_sequence) > max_len:
byte_sequence = byte_sequence[:max_len]
# Add special tokens
if add_special_tokens:
input_ids = [self.BOS] + byte_sequence + [self.EOS]
else:
input_ids = byte_sequence
# Create attention mask (1 for real tokens, 0 for padding)
attention_mask = [1] * len(input_ids)
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'length': len(input_ids)
}
def encode_batch(self, texts: List[str], add_special_tokens: bool = True) -> Dict:
"""
Encode multiple texts with padding
Args:
texts: List of input texts
add_special_tokens: Whether to add special tokens
Returns:
Batched tensors with padding
"""
encoded_texts = []
max_length = 0
# Encode each text
for text in texts:
encoded = self.encode(text, add_special_tokens)
encoded_texts.append(encoded)
max_length = max(max_length, encoded['length'])
# Limit to max sequence length
max_length = min(max_length, self.max_seq_len)
# Initialize batch tensors
batch_size = len(texts)
input_ids = np.full((batch_size, max_length), self.PAD, dtype=np.int64)
attention_mask = np.zeros((batch_size, max_length), dtype=np.float32)
# Fill batch tensors
for i, encoded in enumerate(encoded_texts):
seq_len = min(encoded['length'], max_length)
input_ids[i, :seq_len] = encoded['input_ids'][:seq_len]
attention_mask[i, :seq_len] = 1.0
return {
'input_ids': torch.tensor(input_ids, dtype=torch.long),
'attention_mask': torch.tensor(attention_mask, dtype=torch.float32),
'lengths': torch.tensor([e['length'] for e in encoded_texts], dtype=torch.long)
}
def decode(self, input_ids: Union[List[int], torch.Tensor, np.ndarray],
skip_special_tokens: bool = True) -> str:
"""
Decode byte IDs back to text
Args:
input_ids: Byte ID sequence
skip_special_tokens: Whether to skip special tokens
Returns:
Decoded text string
"""
# Convert to list if needed
if isinstance(input_ids, torch.Tensor):
input_ids = input_ids.cpu().numpy().tolist()
elif isinstance(input_ids, np.ndarray):
input_ids = input_ids.tolist()
# Filter special tokens if requested
if skip_special_tokens:
# Only keep actual bytes (0-255)
input_ids = [b for b in input_ids if 0 <= b <= 255]
else:
# Replace special tokens with readable markers
processed = []
for b in input_ids:
if b == self.PAD:
continue # Skip padding
elif b == self.BOS:
processed.append(ord('[')) # Use [ for BOS
elif b == self.EOS:
processed.append(ord(']')) # Use ] for EOS
elif b == self.MASK:
processed.append(ord('*')) # Use * for MASK
elif 0 <= b <= 255:
processed.append(b)
input_ids = processed
# Convert bytes to text
if not input_ids:
return ""
try:
# 유효한 UTF-8 시퀀스만 추출
valid_bytes = []
i = 0
while i < len(input_ids):
b = input_ids[i]
if b < 128: # ASCII
valid_bytes.append(b)
i += 1
elif 192 <= b < 224: # 2-byte UTF-8
if i + 1 < len(input_ids) and 128 <= input_ids[i+1] < 192:
valid_bytes.extend(input_ids[i:i+2])
i += 2
else:
i += 1 # Skip invalid
elif 224 <= b < 240: # 3-byte UTF-8
if i + 2 < len(input_ids) and all(128 <= input_ids[j] < 192 for j in range(i+1, min(i+3, len(input_ids)))):
valid_bytes.extend(input_ids[i:i+3])
i += 3
else:
i += 1 # Skip invalid
elif 240 <= b < 248: # 4-byte UTF-8
if i + 3 < len(input_ids) and all(128 <= input_ids[j] < 192 for j in range(i+1, min(i+4, len(input_ids)))):
valid_bytes.extend(input_ids[i:i+4])
i += 4
else:
i += 1 # Skip invalid
else:
i += 1 # Skip invalid byte
# Decode valid bytes
if valid_bytes:
byte_array = bytes(valid_bytes)
text = byte_array.decode('utf-8', errors='replace') # replace로 변경
return text
else:
return ""
except Exception as e:
# Fallback: convert ASCII only
return "".join([chr(b) if b < 128 else '' for b in input_ids])
def decode_batch(self, input_ids: torch.Tensor, skip_special_tokens: bool = True) -> List[str]:
"""
Decode a batch of byte sequences
Args:
input_ids: Batch of byte IDs (batch_size, seq_len)
skip_special_tokens: Whether to skip special tokens
Returns:
List of decoded texts
"""
texts = []
for i in range(input_ids.shape[0]):
text = self.decode(input_ids[i], skip_special_tokens)
texts.append(text)
return texts
def tokenize(self, text: str) -> List[int]:
"""
Simple tokenization to byte IDs (no special tokens)
Args:
text: Input text
Returns:
List of byte IDs
"""
return list(text.encode('utf-8'))
def detokenize(self, byte_ids: List[int]) -> str:
"""
Simple detokenization from byte IDs
Args:
byte_ids: List of byte IDs
Returns:
Decoded text
"""
try:
return bytes(byte_ids).decode('utf-8', errors='replace')
except:
return "".join([chr(b) if b < 128 else '?' for b in byte_ids])
def get_vocab_size(self) -> int:
"""Get vocabulary size"""
return self.vocab_size
def get_special_tokens(self) -> Dict[str, int]:
"""Get special token IDs"""
return {
'pad_id': self.PAD,
'bos_id': self.BOS,
'eos_id': self.EOS,
'mask_id': self.MASK
}
# Test code
if __name__ == "__main__":
# Initialize tokenizer
tokenizer = ByteTokenizerV6()
# Test texts in multiple languages
test_texts = [
"Hello World!",
"안녕하세요",
"你好世界",
"こんにちは",
"مرحبا بالعالم",
"Здравствуй мир"
]
print("=" * 50)
print("Single Text Encoding/Decoding Test")
print("=" * 50)
for text in test_texts:
print(f"\nOriginal: {text}")
# Encode
encoded = tokenizer.encode(text)
print(f"Encoded length: {encoded['length']}")
print(f"First 10 bytes: {encoded['input_ids'][:10]}")
# Decode
decoded = tokenizer.decode(encoded['input_ids'])
print(f"Decoded: {decoded}")
print(f"Match: {decoded == text}")
print("\n" + "=" * 50)
print("Batch Encoding/Decoding Test")
print("=" * 50)
# Batch test
batch_result = tokenizer.encode_batch(test_texts)
print(f"Batch shape: {batch_result['input_ids'].shape}")
print(f"Attention mask shape: {batch_result['attention_mask'].shape}")
# Decode batch
decoded_texts = tokenizer.decode_batch(batch_result['input_ids'])
print("\nBatch decoding results:")
for orig, dec in zip(test_texts, decoded_texts):
print(f"Original: {orig}")
print(f"Decoded: {dec}")
print(f"Match: {orig == dec}")
print() |