File size: 24,083 Bytes
ff85374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
"""
Intelligent Tokenizer v6.2.0 - Progressive Splitting Encoder
With GPT-5 suggested improvements
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Optional, Tuple
import math
class RoPEPositionalEncoding(nn.Module):
"""
Rotary Position Embedding (RoPE) - GPT-5 suggestion
Better for handling chunk boundaries and variable sequence lengths
"""
def __init__(self, dim: int, max_seq_len: int = 48, base: int = 10000):
super().__init__()
self.dim = dim
self.max_seq_len = max_seq_len
self.base = base
# Precompute sinusoidal frequencies
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
# Precompute positional encodings
t = torch.arange(max_seq_len).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
self.register_buffer('cos_cached', freqs.cos())
self.register_buffer('sin_cached', freqs.sin())
def forward(self, x: torch.Tensor, seq_len: int = None) -> torch.Tensor:
"""
Apply RoPE to input tensor
Handles chunk boundary corrections as suggested by GPT-5
"""
if seq_len is None:
seq_len = x.shape[1]
# Get cached cos/sin values
cos = self.cos_cached[:seq_len]
sin = self.sin_cached[:seq_len]
# Apply rotary embedding
x_rot = self._apply_rotary_emb(x, cos, sin)
return x_rot
def _apply_rotary_emb(self, x, cos, sin):
"""Apply rotary embedding to input"""
x1, x2 = x[..., ::2], x[..., 1::2]
x_rot = torch.stack([
x1 * cos - x2 * sin,
x1 * sin + x2 * cos
], dim=-1).flatten(-2)
return x_rot
class GatedCrossAttention(nn.Module):
"""
Gated Cross-Attention with MQA - GPT-5 suggestion
Monitor gate values for quality assessment
16Q β 2K/V for 8x memory reduction
"""
def __init__(self, hidden_dim: int = 1280, num_heads: int = 16, kv_heads: int = 2):
super().__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
self.kv_heads = kv_heads # Reduced KV heads (GPT suggestion)
self.head_dim = hidden_dim // num_heads # 80
# Multi-Query Attention projections
self.q_proj = nn.Linear(hidden_dim, hidden_dim) # 16 heads
self.k_proj = nn.Linear(hidden_dim, kv_heads * self.head_dim) # 2 heads
self.v_proj = nn.Linear(hidden_dim, kv_heads * self.head_dim) # 2 heads
self.o_proj = nn.Linear(hidden_dim, hidden_dim)
# Gating mechanism (GPT-5 suggestion)
self.gate = nn.Sequential(
nn.Linear(hidden_dim * 2, hidden_dim),
nn.Sigmoid()
)
# Gate monitoring (for analysis)
self.register_buffer('gate_values', torch.zeros(1))
# Warmup factor (GPT suggestion)
self.register_buffer('warmup_alpha', torch.tensor(1.0))
def forward(self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass with gate monitoring
Returns: (output, gate_values)
"""
batch_size, seq_len = query.shape[:2]
# Multi-head attention projections
Q = self.q_proj(query).view(batch_size, seq_len, self.num_heads, self.head_dim)
K = self.k_proj(key).view(batch_size, -1, self.kv_heads, self.head_dim)
V = self.v_proj(value).view(batch_size, -1, self.kv_heads, self.head_dim)
# Transpose for attention computation
Q = Q.transpose(1, 2) # [batch, heads, seq, dim]
K = K.transpose(1, 2) # [batch, kv_heads, seq, dim]
V = V.transpose(1, 2)
# Repeat KV heads to match Q heads if necessary
if self.kv_heads < self.num_heads:
repeat_factor = self.num_heads // self.kv_heads
K = K.repeat_interleave(repeat_factor, dim=1)
V = V.repeat_interleave(repeat_factor, dim=1)
# Scaled dot-product attention
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
attn_weights = F.softmax(scores, dim=-1)
attn_output = torch.matmul(attn_weights, V)
# Reshape back
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, seq_len, self.hidden_dim)
attn_output = self.o_proj(attn_output)
# Gating mechanism
gate_input = torch.cat([query, attn_output], dim=-1)
gate_values = self.gate(gate_input)
# Store gate values for monitoring (keep tensor shape consistent)
self.gate_values[0] = gate_values.mean().detach()
# Apply gate with warmup factor (GPT suggestion)
gate_values = gate_values * self.warmup_alpha
output = gate_values * attn_output + (1 - gate_values) * query
return output, gate_values
class ProgressiveSplittingLayer(nn.Module):
"""
Core innovation: 48 bytes β 1 token β N tokens β M tokens
"""
def __init__(self, hidden_dim: int = 1280, config: Optional[Dict] = None):
super().__init__()
self.hidden_dim = hidden_dim
self.config = config or {}
# Dynamic splitting: 1~4 tokens for efficiency
# 48 bytes / 4 tokens = 12:1 compression (still beats BPE's 4:1)
self.min_tokens = 1 # 48:1 compression
self.max_tokens = 4 # 12:1 compression (still 3x better than BPE)
# Initial compression: 48 bytes β 1 super token
self.byte_embed = nn.Embedding(260, 64) # Small embedding
self.initial_compressor = nn.Sequential(
nn.Linear(48 * 64, 2048),
nn.LayerNorm(2048),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(2048, hidden_dim),
nn.LayerNorm(hidden_dim)
)
# Language-aware splitting: 1 β N tokens (config-based)
self.language_splitter = nn.ModuleDict({
'analyzer': nn.Sequential(
nn.Linear(hidden_dim, 512),
nn.ReLU(),
nn.Linear(512, 256) # Language features
),
'split_predictor': nn.Linear(256, self.max_tokens), # Predict 1~4 tokens
# Single unified expander that can produce any number of tokens
'dynamic_expander': nn.Sequential(
nn.Linear(hidden_dim, hidden_dim * 2),
nn.LayerNorm(hidden_dim * 2),
nn.GELU(), # Better than ReLU for transformers
nn.Linear(hidden_dim * 2, hidden_dim * self.max_tokens) # Can produce up to 4 tokens
),
# Token-wise importance predictor
'importance_predictor': nn.Sequential(
nn.Linear(hidden_dim, 256),
nn.ReLU(),
nn.Linear(256, self.max_tokens), # Importance for each potential token
nn.Softmax(dim=-1)
)
})
# Boundary refinement: N β M tokens with linguistic awareness
self.boundary_refiner = nn.ModuleDict({
'scorer': nn.Sequential(
nn.Linear(hidden_dim, 512),
nn.ReLU(),
nn.Linear(512, 1)
),
'morpheme_detector': nn.Conv1d(256, 64, 3), # ννμ
'word_detector': nn.Conv1d(256, 64, 5), # λ¨μ΄
'phrase_detector': nn.Conv1d(256, 64, 7), # ꡬ
'adjuster': nn.TransformerEncoderLayer(
d_model=hidden_dim,
nhead=16,
dim_feedforward=4 * hidden_dim,
dropout=0.1,
batch_first=True
)
})
# Initialize split_predictor bias to prefer 1 token initially
# This ensures untrained model starts with maximum compression
with torch.no_grad():
self.language_splitter['split_predictor'].bias.data = torch.tensor([2.0, -1.0, -1.0, -1.0])
# High bias for 1 token, negative for others
def forward(self, input_ids: torch.Tensor, temperature: float = 1.0) -> Dict[str, torch.Tensor]:
"""
Progressive splitting forward pass
Args:
input_ids: Input byte sequence [batch, seq_len]
temperature: Gumbel-Softmax temperature for annealing
"""
batch_size = input_ids.size(0)
# Step 1: 48 bytes β 1 super token
byte_embeddings = self.byte_embed(input_ids) # [batch, 48, 64]
flattened = byte_embeddings.view(batch_size, -1) # [batch, 3072]
super_token = self.initial_compressor(flattened) # [batch, 1280]
super_token = super_token.unsqueeze(1) # [batch, 1, 1280]
# Step 2: Language analysis and splitting (1 β N)
lang_features = self.language_splitter['analyzer'](super_token)
split_logits = self.language_splitter['split_predictor'](lang_features)
split_weights = F.softmax(split_logits, dim=-1) # [batch, 1, 8]
# Direct transformation from super token to initial representation
# No hardcoded splits - let the model learn everything
lang_tokens = super_token # Start with compressed representation
# TRUE Adaptive expansion - Model learns optimal split (1~4 tokens)
# Analyze content to decide how many tokens needed
expansion_features = self.language_splitter['analyzer'](lang_tokens) # [batch, 1, 256]
# Dynamic expansion: generate up to 4 tokens from super token
expanded = self.language_splitter['dynamic_expander'](lang_tokens.squeeze(1)) # [batch, hidden_dim*4]
expanded = expanded.reshape(batch_size, self.max_tokens, self.hidden_dim) # [batch, 4, hidden_dim]
# Predict how many tokens we actually need (1~4)
split_logits = self.language_splitter['split_predictor'](expansion_features.squeeze(1)) # [batch, 4]
# Clamp logits to prevent extreme values that cause NaN
split_logits = torch.clamp(split_logits, min=-10, max=10)
# Ensure minimum temperature to prevent instability
safe_temperature = max(temperature, 0.5)
split_weights = F.gumbel_softmax(split_logits, tau=safe_temperature, hard=False, dim=-1) # [batch, 4]
# Predict importance for each potential token position
importance = self.language_splitter['importance_predictor'](lang_tokens.squeeze(1)) # [batch, 4]
# Dynamic token selection with importance-weighted allocation
# Create cumulative mask for progressive token usage
# If split_weights = [0.1, 0.2, 0.6, 0.1], we mainly use 3 tokens
# Create progressive masks for 1, 2, 3, 4 tokens
masks = []
for n in range(1, self.max_tokens + 1):
mask = torch.zeros(batch_size, self.max_tokens, 1, device=expanded.device)
mask[:, :n, :] = 1.0
masks.append(mask)
# Apply importance-weighted masking
# Important parts get more tokens, less important parts get fewer
weighted_outputs = []
for i, mask in enumerate(masks):
num_tokens = i + 1
# Weight by both split decision and importance
token_weight = split_weights[:, i:i+1].unsqueeze(-1) # [batch, 1, 1]
# Apply importance modulation for asymmetric splits
if num_tokens > 1:
# Redistribute tokens based on importance
importance_adjusted = importance[:, :num_tokens].unsqueeze(-1) # [batch, n, 1]
masked = expanded[:, :num_tokens] * importance_adjusted
else:
masked = expanded[:, :num_tokens]
# Pad to max length
if num_tokens < self.max_tokens:
padding = torch.zeros(batch_size, self.max_tokens - num_tokens, self.hidden_dim,
device=expanded.device)
masked = torch.cat([masked, padding], dim=1)
weighted_outputs.append(masked * token_weight)
# Sum all weighted possibilities (differentiable selection)
lang_tokens = sum(weighted_outputs)
# Determine effective number of tokens (for monitoring)
# Weighted average of token counts
token_counts = torch.arange(1, self.max_tokens + 1, device=split_weights.device, dtype=torch.float32)
avg_tokens = (split_weights * token_counts).sum(dim=-1).mean().item()
k = lang_tokens.size(1)
# Step 3: Boundary refinement (N β M)
# Calculate boundary scores for each token position
boundary_scores = self.boundary_refiner['scorer'](lang_tokens) # [batch, N, 1]
# Detect linguistic boundaries (morpheme, word, phrase)
# Extract features for boundary detection
if hasattr(lang_tokens, 'shape') and len(lang_tokens.shape) == 3:
batch_size, num_tokens, hidden_dim = lang_tokens.shape
# For boundary detection, we need to consider the original byte sequence
# But we're working with compressed tokens here
# So we detect boundaries based on learned representations
# Apply boundary adjustment with TransformerEncoderLayer
# This learns to adjust token boundaries based on context
refined_tokens = self.boundary_refiner['adjuster'](lang_tokens)
# The adjuster should learn to:
# 1. Respect UTF-8 boundaries (learned during training)
# 2. Align with word/phrase boundaries (learned from language patterns)
# 3. Maintain semantic coherence within each token
else:
refined_tokens = lang_tokens
# Determine actual number of tokens based on highest probability
# During inference, use argmax. During training, use weighted average.
if self.training:
# During training, use weighted average for differentiability
actual_num_tokens = avg_tokens
else:
# During inference, select the split with highest probability
split_decision = torch.argmax(split_weights, dim=-1) # [batch]
actual_num_tokens = (split_decision.float().mean() + 1).item() # +1 because indices are 0-3
# Calculate compression ratio based on actual tokens used
compression_ratio = 48.0 / max(1, actual_num_tokens)
return {
'tokens': refined_tokens,
'num_tokens': actual_num_tokens,
'compression_ratio': torch.tensor(compression_ratio, device=refined_tokens.device),
'gate_values': None, # Will be filled by cross-attention
'language_features': lang_features,
'split_weights': split_weights,
'avg_tokens': avg_tokens if 'avg_tokens' in locals() else refined_tokens.size(1),
'split_distribution': split_weights.mean(dim=0) if 'split_weights' in locals() else None
}
class EncoderV62(nn.Module):
"""
4-Layer Progressive Splitting Encoder with Cross-Attention
All layers: 1280 dimensions
"""
def __init__(self, config: Optional[Dict] = None):
super().__init__()
# Store config for later use
self.config = config or {}
# Configuration
self.hidden_dim = 1280
self.num_heads = 16
self.num_layers = 4
self.max_seq_len = 48
self.dropout = 0.1
# RoPE positional encoding (GPT-5 suggestion)
self.rope = RoPEPositionalEncoding(self.hidden_dim, self.max_seq_len)
# Layer 0: Progressive Splitting (48β1βNβM) - Pass config
self.progressive_splitter = ProgressiveSplittingLayer(self.hidden_dim, config)
# Layers 1-3: Transformer encoders with cross-attention
self.encoder_layers = nn.ModuleList([
nn.TransformerEncoderLayer(
d_model=self.hidden_dim,
nhead=self.num_heads,
dim_feedforward=4 * self.hidden_dim, # 5120
dropout=self.dropout,
batch_first=True
) for _ in range(3)
])
# Cross-attention between layers with MQA (GPT-5 suggestion)
self.cross_attentions = nn.ModuleList([
GatedCrossAttention(self.hidden_dim, self.num_heads, kv_heads=2) # 8x memory reduction
for _ in range(3)
])
# Output heads for different tasks
self.boundary_head = nn.Linear(self.hidden_dim, 4)
self.language_head = nn.Linear(self.hidden_dim, 128) # Reduced from 512 (GPT suggestion)
self.compression_head = nn.Linear(self.hidden_dim, self.hidden_dim)
# Monitoring metrics (GPT-5 suggestion)
self.register_buffer('compression_ratios', torch.zeros(1))
self.register_buffer('gate_averages', torch.zeros(3))
def forward(self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
temperature: float = 1.0) -> Dict[str, torch.Tensor]:
"""
Forward pass through the encoder
Args:
input_ids: Input byte sequence
attention_mask: Optional attention mask
temperature: Gumbel-Softmax temperature for annealing
"""
# Layer 0: Progressive splitting with temperature
split_output = self.progressive_splitter(input_ids, temperature)
x = split_output['tokens'] # [batch, M, 1280]
# Apply RoPE
x = self.rope(x, x.size(1))
# Store all hidden states for decoder
all_hidden_states = [x]
gate_values_list = []
# Layers 1-3 with cross-attention
for i, (encoder_layer, cross_attn) in enumerate(
zip(self.encoder_layers, self.cross_attentions)
):
# Self-attention through transformer layer
# GPT final check: Don't pass mask after progressive splitting changes sequence length
x = encoder_layer(x) # No mask needed (no padding after compression)
# Cross-attention with previous layer
if i > 0:
# Cross-attention with previous layer
x, gate_values = cross_attn(
query=x,
key=all_hidden_states[-1],
value=all_hidden_states[-1],
mask=None # Mask not applicable after compression
)
gate_values_list.append(gate_values)
# Keep tensor shape consistent - store in existing buffer element
self.gate_averages[i-1] = gate_values.mean().detach().item() # Fix indexing
all_hidden_states.append(x)
# Output projections
boundaries = self.boundary_head(x)
language_clusters = self.language_head(x)
compressed = self.compression_head(x)
# Update monitoring metrics
# Ensure tensor is 1-dimensional for buffer assignment
compression_ratio = split_output['compression_ratio']
if compression_ratio.dim() == 0: # Scalar tensor
self.compression_ratios[0] = compression_ratio
else:
self.compression_ratios = compression_ratio
return {
'last_hidden_state': x,
'all_hidden_states': all_hidden_states,
'boundaries': boundaries,
'language_clusters': language_clusters,
'compressed': compressed,
'compression_ratio': split_output['compression_ratio'],
'num_tokens': split_output['num_tokens'],
'splitting_probs': split_output.get('split_weights', None), # Add for diagnostics
'gate_values': gate_values_list,
'gate_averages': self.gate_averages,
'split_info': {
'language_features': split_output['language_features'],
'split_weights': split_output['split_weights']
}
}
def get_monitoring_stats(self) -> Dict[str, float]:
"""
Get monitoring statistics (GPT-5 suggestion)
"""
return {
'avg_compression_ratio': self.compression_ratios.item(),
'gate_layer1': self.gate_averages[0].item(),
'gate_layer2': self.gate_averages[1].item(),
'gate_layer3': self.gate_averages[2].item(),
}
def set_warmup_step(self, step: int, total_warmup: int = 1000):
"""
Set warmup alpha for all gates (GPT suggestion)
Gradually increase gate influence from 0 to 1
"""
alpha = min(1.0, step / total_warmup)
for cross_attn in self.cross_attentions:
cross_attn.warmup_alpha = torch.tensor(alpha, device=cross_attn.warmup_alpha.device)
def adaptive_compression_control(self, reconstruction_loss: float):
"""
Adaptive compression based on reconstruction quality
No fixed phases - model learns optimal compression
"""
# If reconstruction is poor, model will learn to use more tokens
# This happens automatically through gradient descent
# No manual phase control needed
pass # Let gradients handle it
class DualSlidingWindowEncoder(EncoderV62):
"""
Extension with dual sliding window system
Handles both chunk-level and token-level boundaries
"""
def __init__(self, config: Optional[Dict] = None):
super().__init__(config)
# Chunk-level sliding window
self.chunk_window = nn.Conv1d(
in_channels=1,
out_channels=1,
kernel_size=8, # 8-byte overlap
stride=40, # 48-8=40 stride
padding=4
)
# Token-level sliding window
self.token_window = nn.MultiheadAttention(
embed_dim=self.hidden_dim,
num_heads=self.num_heads,
batch_first=True
)
def process_long_sequence(self, input_ids: torch.Tensor) -> torch.Tensor:
"""
Handle sequences longer than 48 bytes with sliding windows
"""
batch_size, seq_len = input_ids.shape
if seq_len <= 48:
return super().forward(input_ids)
# Process in chunks with overlap
chunks = []
for i in range(0, seq_len - 48 + 1, 40): # 8-byte overlap
chunk = input_ids[:, i:i+48]
chunk_output = super().forward(chunk)
chunks.append(chunk_output['last_hidden_state'])
# Combine chunks with attention
combined = torch.cat(chunks, dim=1)
attended, _ = self.token_window(combined, combined, combined)
return {
'last_hidden_state': attended,
'num_chunks': len(chunks),
'total_compression': seq_len / attended.size(1)
}
if __name__ == "__main__":
# Test the encoder
encoder = EncoderV62()
# Test input
batch_size = 2
input_ids = torch.randint(0, 256, (batch_size, 48))
# Forward pass
output = encoder(input_ids)
print(f"Input shape: {input_ids.shape}")
print(f"Output tokens: {output['num_tokens']}")
print(f"Compression ratio: {output['compression_ratio']:.2f}:1")
print(f"Gate averages: {output['gate_averages']}")
print(f"Monitoring stats: {encoder.get_monitoring_stats()}") |