File size: 16,795 Bytes
ff85374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
"""
Intelligent Tokenizer v6.2.0 - Byte Tokenizer with 46+2 Configuration
Handles chunking, sliding windows, and boundary adjustments
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
def _trim_utf8_boundary(byte_seq: List[int], limit: int) -> int:
"""
Trim byte sequence to valid UTF-8 boundary (GPT suggestion)
"""
end = min(limit, len(byte_seq))
while end > 0:
try:
bytes(byte_seq[:end]).decode('utf-8')
return end
except UnicodeDecodeError:
end -= 1
return limit
class ByteTokenizerV62:
"""
Pure byte-level tokenizer
46 content bytes + 2 special tokens (BOS/EOS) = 48 total
"""
def __init__(self, config: Optional[Dict] = None):
# Configuration
self.content_size = 46 # Actual content bytes
self.max_seq_len = 48 # Total with BOS/EOS
self.chunk_overlap = 8 # Overlap for sliding window
# Special tokens
self.PAD = 256
self.BOS = 257
self.EOS = 258
self.MASK = 259
self.vocab_size = 260 # 256 bytes + 4 special
def encode(self,
text: str,
add_special_tokens: bool = True,
return_chunks: bool = False) -> Dict[str, torch.Tensor]:
"""
Encode text to byte sequences
Args:
text: Input text
add_special_tokens: Whether to add BOS/EOS
return_chunks: Return multiple chunks for long sequences
"""
# Convert to UTF-8 bytes
byte_sequence = list(text.encode('utf-8'))
if return_chunks and len(byte_sequence) > self.content_size:
# Handle long sequences with sliding window
return self._encode_with_chunks(byte_sequence, add_special_tokens)
# Single chunk processing with UTF-8 boundary (GPT suggestion)
if len(byte_sequence) > self.content_size:
cut_point = _trim_utf8_boundary(byte_sequence, self.content_size)
byte_sequence = byte_sequence[:cut_point]
# Add special tokens (GPT suggestion: cleaner padding order)
if add_special_tokens:
byte_sequence = [self.BOS] + byte_sequence + [self.EOS]
# Pad to max_seq_len (after special tokens for cleaner structure)
if len(byte_sequence) < self.max_seq_len:
padding_length = self.max_seq_len - len(byte_sequence)
byte_sequence = byte_sequence + [self.PAD] * padding_length
input_ids = torch.tensor(byte_sequence, dtype=torch.long)
attention_mask = (input_ids != self.PAD) # bool type (GPT suggestion)
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'length': len(byte_sequence),
'original_length': len(text.encode('utf-8'))
}
def _encode_with_chunks(self,
byte_sequence: List[int],
add_special_tokens: bool) -> Dict[str, torch.Tensor]:
"""
Encode long sequences with sliding window chunks
"""
chunks = []
positions = []
# Calculate stride (content_size - overlap)
stride = self.content_size - self.chunk_overlap
for i in range(0, len(byte_sequence), stride):
# Extract chunk
chunk = byte_sequence[i:i + self.content_size]
# Skip if chunk is too small (last chunk)
if len(chunk) < self.content_size // 2:
if chunks: # Merge with previous chunk if exists
last_chunk = chunks[-1]['input_ids'].tolist()
# Remove padding and special tokens from last chunk (GPT final check)
last_chunk = [b for b in last_chunk if b not in [self.PAD, self.BOS, self.EOS]]
# Add current chunk
merged = last_chunk + chunk + [self.EOS]
# Repad
if len(merged) < self.max_seq_len:
merged += [self.PAD] * (self.max_seq_len - len(merged))
merged_ids = torch.tensor(merged[:self.max_seq_len], dtype=torch.long)
merged_mask = (merged_ids != self.PAD) # Recalculate mask (GPT suggestion)
chunks[-1]['input_ids'] = merged_ids
chunks[-1]['attention_mask'] = merged_mask
break
# Pad chunk if necessary
if len(chunk) < self.content_size:
chunk += [self.PAD] * (self.content_size - len(chunk))
# Add special tokens
if add_special_tokens:
chunk_with_special = [self.BOS] + chunk + [self.EOS]
else:
chunk_with_special = chunk
# Create tensors
input_ids = torch.tensor(chunk_with_special, dtype=torch.long)
attention_mask = (input_ids != self.PAD) # bool type (GPT suggestion)
chunks.append({
'input_ids': input_ids,
'attention_mask': attention_mask,
'position': (i, min(i + self.content_size, len(byte_sequence)))
})
positions.append((i, min(i + self.content_size, len(byte_sequence))))
# Stack all chunks
all_input_ids = torch.stack([c['input_ids'] for c in chunks])
all_attention_masks = torch.stack([c['attention_mask'] for c in chunks])
return {
'input_ids': all_input_ids, # [num_chunks, seq_len]
'attention_mask': all_attention_masks,
'num_chunks': len(chunks),
'chunk_positions': positions,
'original_length': len(byte_sequence)
}
def reconstruct(self,
input_ids: torch.Tensor,
positions: List[Tuple[int, int]] = None,
skip_special_tokens: bool = True,
overlap: int = 8) -> str:
"""
Reconstruct text from multiple chunks (GPT suggestion)
Args:
input_ids: [num_chunks, seq_len] for multi-chunk
positions: List of (start, end) positions for each chunk
skip_special_tokens: Whether to skip special tokens
overlap: Overlap size between chunks
"""
if input_ids.dim() == 1:
# Single sequence, use regular decode
return self.decode(input_ids, skip_special_tokens)
# Multi-chunk reconstruction
pieces = []
for i, chunk_ids in enumerate(input_ids):
chunk_ids = chunk_ids.cpu().numpy().tolist()
# Remove special tokens and padding
if skip_special_tokens:
chunk_ids = [
b for b in chunk_ids
if b not in [self.PAD, self.BOS, self.EOS, self.MASK] and b < 256
]
pieces.append(chunk_ids)
# Merge chunks with overlap handling
output = []
for i, chunk in enumerate(pieces):
if i == 0:
output.extend(chunk)
else:
# Skip overlap bytes from current chunk
output.extend(chunk[overlap:] if len(chunk) > overlap else chunk)
# Convert to string
try:
text = bytes(output).decode('utf-8', errors='replace')
except:
text = ""
return text
def decode(self,
input_ids: torch.Tensor,
skip_special_tokens: bool = True) -> str:
"""
Decode byte sequences back to text
"""
if isinstance(input_ids, torch.Tensor):
input_ids = input_ids.cpu().numpy().tolist()
# Handle batch dimension
if isinstance(input_ids[0], list):
input_ids = input_ids[0]
# Remove special tokens and padding
if skip_special_tokens:
input_ids = [
b for b in input_ids
if b not in [self.PAD, self.BOS, self.EOS, self.MASK] and b < 256
]
# Convert bytes to string
try:
text = bytes(input_ids).decode('utf-8', errors='replace')
except:
text = ""
return text
def batch_encode(self,
texts: List[str],
add_special_tokens: bool = True) -> Dict[str, torch.Tensor]:
"""
Encode multiple texts as a batch
"""
encoded = [self.encode(text, add_special_tokens) for text in texts]
# Find max length
max_len = max(e['length'] for e in encoded)
max_len = min(max_len, self.max_seq_len)
# Create batch tensors
batch_size = len(texts)
input_ids = torch.full((batch_size, max_len), self.PAD, dtype=torch.long)
attention_mask = torch.zeros((batch_size, max_len), dtype=torch.bool) # bool type (GPT suggestion)
for i, enc in enumerate(encoded):
seq_len = min(enc['length'], max_len)
if enc['input_ids'].dim() == 0: # Handle scalar
enc['input_ids'] = enc['input_ids'].unsqueeze(0)
input_ids[i, :seq_len] = enc['input_ids'][:seq_len]
attention_mask[i, :seq_len] = True
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'lengths': [e['length'] for e in encoded]
}
class ChunkBoundaryAdjuster(nn.Module):
"""
Neural network for adjusting chunk boundaries
Learns optimal splitting points
"""
def __init__(self, hidden_dim: int = 256):
super().__init__()
# Boundary scoring network
self.boundary_scorer = nn.Sequential(
nn.Linear(256, hidden_dim), # Input: byte embeddings
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, 1), # Output: boundary score
nn.Sigmoid()
)
# UTF-8 boundary detector
self.utf8_detector = nn.Sequential(
nn.Conv1d(1, 16, kernel_size=4, padding=2), # Detect multi-byte patterns
nn.ReLU(),
nn.Conv1d(16, 1, kernel_size=1),
nn.Sigmoid()
)
def forward(self, byte_sequence: torch.Tensor) -> torch.Tensor:
"""
Find optimal chunk boundaries
Args:
byte_sequence: [batch, seq_len, embedding_dim]
Returns:
boundary_scores: [batch, seq_len] - probability of boundary at each position
"""
batch_size, seq_len = byte_sequence.shape[:2]
# Score each position as potential boundary
boundary_scores = self.boundary_scorer(byte_sequence).squeeze(-1)
# Detect UTF-8 boundaries (avoid splitting multi-byte characters)
byte_values = byte_sequence[..., 0].unsqueeze(1) # [batch, 1, seq_len]
utf8_scores = self.utf8_detector(byte_values).squeeze(1) # [batch, seq_len]
# Combine scores (prefer boundaries at valid UTF-8 positions)
combined_scores = boundary_scores * utf8_scores
# Apply constraints: boundaries should be ~46 bytes apart
for i in range(0, seq_len, 46):
if i < seq_len:
# Boost score at expected positions
combined_scores[:, i] = combined_scores[:, i] * 1.5
return combined_scores
class SlidingWindowProcessor(nn.Module):
"""
Process sequences with sliding windows at multiple scales
"""
def __init__(self, window_sizes: List[int] = [8, 16, 32, 46]):
super().__init__()
self.window_sizes = window_sizes
# Multi-scale convolutions for different window sizes
self.convs = nn.ModuleList([
nn.Conv1d(256, 128, kernel_size=ws, stride=ws//2, padding=ws//4)
for ws in window_sizes
])
# Fusion layer
self.fusion = nn.Sequential(
nn.Linear(128 * len(window_sizes), 256),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(256, 256)
)
def forward(self, byte_embeddings: torch.Tensor) -> torch.Tensor:
"""
Apply multi-scale sliding windows
Args:
byte_embeddings: [batch, seq_len, embedding_dim]
Returns:
processed: [batch, seq_len, embedding_dim]
"""
# Transpose for conv1d
x = byte_embeddings.transpose(1, 2) # [batch, embed, seq]
# Apply multi-scale convolutions
multi_scale_features = []
for conv in self.convs:
features = conv(x) # Different seq lengths
# Global average pooling to fixed size
pooled = F.adaptive_avg_pool1d(features, byte_embeddings.size(1))
multi_scale_features.append(pooled)
# Concatenate and transpose back
concat = torch.cat(multi_scale_features, dim=1) # [batch, 128*scales, seq]
concat = concat.transpose(1, 2) # [batch, seq, 128*scales]
# Fuse multi-scale features
fused = self.fusion(concat) # [batch, seq, 256]
# Residual connection
output = fused + byte_embeddings
return output
class AdaptiveChunker:
"""
Adaptive chunking based on content complexity
Simple heuristic-based chunker for inference
"""
def __init__(self):
self.min_chunk = 32
self.max_chunk = 46
self.target_chunk = 46
def determine_chunk_size(self, text: str) -> int:
"""
Determine optimal chunk size based on text characteristics
"""
byte_seq = text.encode('utf-8')
# Check character types
has_cjk = any(b >= 0x80 for b in byte_seq[:100]) # Non-ASCII
has_arabic = any(0x0600 <= ord(c) <= 0x06FF for c in text[:100])
# Adjust chunk size based on content
if has_cjk:
# CJK characters need smaller chunks (multi-byte)
return self.min_chunk
elif has_arabic:
# Arabic also benefits from smaller chunks
return 40
else:
# ASCII/Latin can use larger chunks
return self.target_chunk
def chunk_text(self, text: str) -> List[str]:
"""
Split text into adaptive chunks
"""
chunk_size = self.determine_chunk_size(text)
byte_seq = text.encode('utf-8')
chunks = []
i = 0
while i < len(byte_seq):
# Find chunk boundary (don't split UTF-8 sequences)
end = min(i + chunk_size, len(byte_seq))
# Backtrack to valid UTF-8 boundary if needed
while end > i and end < len(byte_seq):
try:
_ = byte_seq[i:end].decode('utf-8')
break
except:
end -= 1
chunk_bytes = byte_seq[i:end]
chunks.append(chunk_bytes.decode('utf-8', errors='replace'))
i = end
return chunks
if __name__ == "__main__":
# Test the tokenizer
tokenizer = ByteTokenizerV62()
# Test texts
test_texts = [
"Hello, world!",
"안녕하세요, 세계!",
"今天天气很好。",
"مرحبا بالعالم",
"A" * 100 # Long text
]
for text in test_texts:
print(f"\nText: {text[:50]}...")
# Single chunk encoding
encoded = tokenizer.encode(text)
print(f" Encoded shape: {encoded['input_ids'].shape}")
print(f" Original length: {encoded['original_length']} bytes")
# Decode back
decoded = tokenizer.decode(encoded['input_ids'])
print(f" Decoded: {decoded[:50]}...")
# Check multi-chunk for long text
if encoded['original_length'] > 46:
multi_encoded = tokenizer.encode(text, return_chunks=True)
print(f" Chunks: {multi_encoded['num_chunks']}")
# Test batch encoding
batch = tokenizer.batch_encode(test_texts[:3])
print(f"\nBatch shape: {batch['input_ids'].shape}")
# Test adaptive chunker
chunker = AdaptiveChunker()
for text in test_texts[:3]:
chunk_size = chunker.determine_chunk_size(text)
print(f"\n{text[:30]}... → Chunk size: {chunk_size}") |