|
|
"""
|
|
|
Unified Intelligent Tokenizer Model v6.0
|
|
|
์์ ํ์ต ๊ธฐ๋ฐ - ๋ชจ๋ ํต์ฌ ์ฝ๋ ํตํฉ
|
|
|
"""
|
|
|
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.nn.functional as F
|
|
|
import math
|
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
|
|
|
|
|
class PositionalEncoding(nn.Module):
|
|
|
"""
|
|
|
Sinusoidal Positional Encoding (Transformer ์๋ณธ ๋ฐฉ์)
|
|
|
ํ์ต ๊ฐ๋ฅํ ์์น ์๋ฒ ๋ฉ ๋์ ๊ณ ์ ๋ sin/cos ํจํด ์ฌ์ฉ
|
|
|
"""
|
|
|
|
|
|
def __init__(self, d_model: int, max_len: int = 5000, dropout: float = 0.1):
|
|
|
super().__init__()
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
|
|
|
|
|
pe = torch.zeros(max_len, d_model)
|
|
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
|
|
|
|
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
|
|
|
-(math.log(10000.0) / d_model))
|
|
|
|
|
|
pe[:, 0::2] = torch.sin(position * div_term)
|
|
|
pe[:, 1::2] = torch.cos(position * div_term)
|
|
|
|
|
|
|
|
|
self.register_buffer('pe', pe.unsqueeze(0))
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
"""
|
|
|
Add positional encoding to input
|
|
|
Args:
|
|
|
x: (batch_size, seq_len, d_model)
|
|
|
"""
|
|
|
x = x + self.pe[:, :x.size(1)]
|
|
|
return self.dropout(x)
|
|
|
|
|
|
|
|
|
class ByteTokenizer:
|
|
|
"""
|
|
|
Pure byte-level tokenizer - no language rules
|
|
|
"""
|
|
|
|
|
|
def __init__(self, max_seq_len: int = 512):
|
|
|
self.max_seq_len = max_seq_len
|
|
|
self.PAD = 256
|
|
|
self.BOS = 257
|
|
|
self.EOS = 258
|
|
|
self.MASK = 259
|
|
|
|
|
|
def encode(self, text: str, add_special_tokens: bool = True) -> Dict[str, torch.Tensor]:
|
|
|
|
|
|
byte_seq = list(text.encode('utf-8'))
|
|
|
|
|
|
|
|
|
if len(byte_seq) > self.max_seq_len - 2:
|
|
|
byte_seq = byte_seq[:self.max_seq_len - 2]
|
|
|
|
|
|
|
|
|
if add_special_tokens:
|
|
|
byte_seq = [self.BOS] + byte_seq + [self.EOS]
|
|
|
|
|
|
input_ids = torch.tensor(byte_seq, dtype=torch.long)
|
|
|
attention_mask = torch.ones_like(input_ids)
|
|
|
|
|
|
return {
|
|
|
'input_ids': input_ids,
|
|
|
'attention_mask': attention_mask,
|
|
|
'length': len(input_ids)
|
|
|
}
|
|
|
|
|
|
def encode_batch(self, texts: List[str]) -> Dict[str, torch.Tensor]:
|
|
|
encoded = [self.encode(text) for text in texts]
|
|
|
max_len = min(max(e['length'] for e in encoded), self.max_seq_len)
|
|
|
|
|
|
batch_size = len(texts)
|
|
|
input_ids = torch.full((batch_size, max_len), self.PAD, dtype=torch.long)
|
|
|
attention_mask = torch.zeros((batch_size, max_len), dtype=torch.float32)
|
|
|
|
|
|
for i, enc in enumerate(encoded):
|
|
|
seq_len = min(enc['length'], max_len)
|
|
|
input_ids[i, :seq_len] = enc['input_ids'][:seq_len]
|
|
|
attention_mask[i, :seq_len] = 1.0
|
|
|
|
|
|
return {
|
|
|
'input_ids': input_ids,
|
|
|
'attention_mask': attention_mask
|
|
|
}
|
|
|
|
|
|
def decode(self, input_ids: torch.Tensor, skip_special_tokens: bool = True) -> str:
|
|
|
if isinstance(input_ids, torch.Tensor):
|
|
|
input_ids = input_ids.cpu().numpy().tolist()
|
|
|
|
|
|
if skip_special_tokens:
|
|
|
input_ids = [b for b in input_ids if b < 256]
|
|
|
|
|
|
try:
|
|
|
byte_array = bytes([min(b, 255) for b in input_ids if b != self.PAD])
|
|
|
return byte_array.decode('utf-8', errors='replace')
|
|
|
except:
|
|
|
return "".join([chr(b) if b < 128 else '?' for b in input_ids if b < 256])
|
|
|
|
|
|
|
|
|
class ByteEncoder(nn.Module):
|
|
|
"""
|
|
|
5-Layer Encoder with Positional Encoding
|
|
|
Layer dimensions: [384, 384, 512, 640, 768] - ์์ ๋จ
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
vocab_size: int = 260,
|
|
|
hidden_dims: List[int] = [384, 384, 512, 640, 768],
|
|
|
num_heads: int = 8,
|
|
|
dropout: float = 0.1,
|
|
|
max_seq_len: int = 512
|
|
|
):
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
self.byte_embedding = nn.Embedding(vocab_size, hidden_dims[0])
|
|
|
|
|
|
|
|
|
self.pos_encoding = PositionalEncoding(hidden_dims[0], max_seq_len, dropout)
|
|
|
|
|
|
|
|
|
self.layers = nn.ModuleList()
|
|
|
for i in range(len(hidden_dims)):
|
|
|
input_dim = hidden_dims[i-1] if i > 0 else hidden_dims[0]
|
|
|
output_dim = hidden_dims[i]
|
|
|
|
|
|
|
|
|
if input_dim != output_dim:
|
|
|
proj = nn.Linear(input_dim, output_dim)
|
|
|
else:
|
|
|
proj = None
|
|
|
|
|
|
|
|
|
layer = nn.TransformerEncoderLayer(
|
|
|
d_model=output_dim,
|
|
|
nhead=num_heads,
|
|
|
dim_feedforward=output_dim * 4,
|
|
|
dropout=dropout,
|
|
|
activation='gelu',
|
|
|
batch_first=True,
|
|
|
norm_first=True
|
|
|
)
|
|
|
|
|
|
self.layers.append(nn.ModuleDict({
|
|
|
'projection': proj,
|
|
|
'transformer': layer,
|
|
|
'norm': nn.LayerNorm(output_dim)
|
|
|
}))
|
|
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
input_ids: torch.Tensor,
|
|
|
attention_mask: Optional[torch.Tensor] = None
|
|
|
) -> Dict[str, torch.Tensor]:
|
|
|
|
|
|
x = self.byte_embedding(input_ids)
|
|
|
|
|
|
|
|
|
x = self.pos_encoding(x)
|
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
all_hidden_states = []
|
|
|
for layer_dict in self.layers:
|
|
|
|
|
|
if layer_dict['projection'] is not None:
|
|
|
x = layer_dict['projection'](x)
|
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
|
|
|
|
|
key_padding_mask = (attention_mask == 0)
|
|
|
x = layer_dict['transformer'](x, src_key_padding_mask=key_padding_mask)
|
|
|
else:
|
|
|
x = layer_dict['transformer'](x)
|
|
|
x = layer_dict['norm'](x)
|
|
|
all_hidden_states.append(x)
|
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
|
|
mask = attention_mask.unsqueeze(-1)
|
|
|
pooled = (x * mask).sum(dim=1) / mask.sum(dim=1).clamp(min=1e-9)
|
|
|
else:
|
|
|
pooled = x.mean(dim=1)
|
|
|
|
|
|
return {
|
|
|
'last_hidden_state': x,
|
|
|
'pooled_output': pooled,
|
|
|
'all_hidden_states': all_hidden_states
|
|
|
}
|
|
|
|
|
|
|
|
|
class CrossAttention(nn.Module):
|
|
|
"""
|
|
|
Enhanced Cross-attention for relation learning between sequences
|
|
|
์ถ๋ก ๋ ์ด์ด ์ฐ๊ฒฐ์ ์ํ ๊ฐํ๋ ๊ด๊ณ ํ์ต
|
|
|
"""
|
|
|
|
|
|
def __init__(self, hidden_dim: int = 768, num_heads: int = 8, dropout: float = 0.1):
|
|
|
super().__init__()
|
|
|
|
|
|
self.cross_attn = nn.MultiheadAttention(
|
|
|
hidden_dim, num_heads, dropout, batch_first=True
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.relation_head = nn.Sequential(
|
|
|
nn.Linear(hidden_dim * 2, hidden_dim),
|
|
|
nn.GELU(),
|
|
|
nn.Dropout(dropout),
|
|
|
nn.Linear(hidden_dim, hidden_dim // 2),
|
|
|
nn.GELU(),
|
|
|
nn.Dropout(dropout),
|
|
|
nn.Linear(hidden_dim // 2, 8)
|
|
|
)
|
|
|
|
|
|
|
|
|
self.gate = nn.Sequential(
|
|
|
nn.Linear(hidden_dim * 2, hidden_dim),
|
|
|
nn.Sigmoid()
|
|
|
)
|
|
|
|
|
|
self.norm1 = nn.LayerNorm(hidden_dim)
|
|
|
self.norm2 = nn.LayerNorm(hidden_dim)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
query: torch.Tensor,
|
|
|
key: torch.Tensor,
|
|
|
query_mask: Optional[torch.Tensor] = None,
|
|
|
key_mask: Optional[torch.Tensor] = None
|
|
|
) -> Dict[str, torch.Tensor]:
|
|
|
|
|
|
query_norm = self.norm1(query)
|
|
|
key_norm = self.norm2(key)
|
|
|
|
|
|
|
|
|
if key_mask is not None:
|
|
|
|
|
|
if key_mask.dim() == 2 and key_mask.size(1) != key.size(1):
|
|
|
|
|
|
batch_size = key.size(0)
|
|
|
seq_len = key.size(1)
|
|
|
key_mask = torch.ones(batch_size, seq_len, dtype=key_mask.dtype, device=key_mask.device)
|
|
|
|
|
|
|
|
|
attn_output, attn_weights = self.cross_attn(
|
|
|
query_norm, key_norm, key_norm,
|
|
|
key_padding_mask=(key_mask == 0) if key_mask is not None else None
|
|
|
)
|
|
|
|
|
|
|
|
|
attn_output = attn_output + query
|
|
|
|
|
|
|
|
|
gate_input = torch.cat([query.mean(dim=1), key.mean(dim=1)], dim=-1)
|
|
|
gate_weights = self.gate(gate_input).unsqueeze(1)
|
|
|
|
|
|
|
|
|
fused_output = gate_weights * attn_output + (1 - gate_weights) * query
|
|
|
|
|
|
|
|
|
query_pooled = query.mean(dim=1) if query_mask is None else \
|
|
|
(query * query_mask.unsqueeze(-1)).sum(1) / query_mask.sum(1, keepdim=True).clamp(min=1e-9)
|
|
|
key_pooled = key.mean(dim=1) if key_mask is None else \
|
|
|
(key * key_mask.unsqueeze(-1)).sum(1) / key_mask.sum(1, keepdim=True).clamp(min=1e-9)
|
|
|
|
|
|
|
|
|
combined = torch.cat([query_pooled, key_pooled], dim=-1)
|
|
|
relation_logits = self.relation_head(combined)
|
|
|
|
|
|
return {
|
|
|
'cross_attention': fused_output,
|
|
|
'attention_weights': attn_weights,
|
|
|
'relation_logits': relation_logits,
|
|
|
'gate_weights': gate_weights.squeeze(1)
|
|
|
}
|
|
|
|
|
|
|
|
|
class TransformerDecoder(nn.Module):
|
|
|
"""
|
|
|
Transformer Decoder with Positional Encoding
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
vocab_size: int = 260,
|
|
|
hidden_dim: int = 768,
|
|
|
num_heads: int = 8,
|
|
|
num_layers: int = 6,
|
|
|
dropout: float = 0.1,
|
|
|
max_seq_len: int = 512
|
|
|
):
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
self.token_embedding = nn.Embedding(vocab_size, hidden_dim)
|
|
|
|
|
|
|
|
|
self.pos_encoding = PositionalEncoding(hidden_dim, max_seq_len, dropout)
|
|
|
|
|
|
|
|
|
decoder_layer = nn.TransformerDecoderLayer(
|
|
|
d_model=hidden_dim,
|
|
|
nhead=num_heads,
|
|
|
dim_feedforward=hidden_dim * 4,
|
|
|
dropout=dropout,
|
|
|
activation='gelu',
|
|
|
batch_first=True,
|
|
|
norm_first=True
|
|
|
)
|
|
|
|
|
|
self.transformer = nn.TransformerDecoder(decoder_layer, num_layers)
|
|
|
|
|
|
|
|
|
self.output_projection = nn.Linear(hidden_dim, vocab_size)
|
|
|
|
|
|
self.hidden_dim = hidden_dim
|
|
|
self.vocab_size = vocab_size
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
encoder_hidden: torch.Tensor,
|
|
|
decoder_input_ids: Optional[torch.Tensor] = None,
|
|
|
encoder_mask: Optional[torch.Tensor] = None,
|
|
|
decoder_mask: Optional[torch.Tensor] = None
|
|
|
) -> Dict[str, torch.Tensor]:
|
|
|
batch_size = encoder_hidden.size(0)
|
|
|
|
|
|
|
|
|
if decoder_input_ids is None:
|
|
|
decoder_input_ids = torch.full((batch_size, 1), 257, device=encoder_hidden.device)
|
|
|
|
|
|
|
|
|
dec_seq_len = decoder_input_ids.size(1)
|
|
|
x = self.token_embedding(decoder_input_ids)
|
|
|
x = self.pos_encoding(x)
|
|
|
|
|
|
|
|
|
causal_mask = torch.triu(
|
|
|
torch.ones(dec_seq_len, dec_seq_len, device=x.device) * float('-inf'),
|
|
|
diagonal=1
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
enc_seq_len = encoder_hidden.size(1)
|
|
|
|
|
|
|
|
|
if encoder_mask is not None:
|
|
|
if encoder_mask.size(1) != enc_seq_len:
|
|
|
|
|
|
|
|
|
memory_key_padding_mask = torch.zeros(
|
|
|
encoder_hidden.size(0), enc_seq_len,
|
|
|
dtype=torch.bool, device=encoder_hidden.device
|
|
|
)
|
|
|
else:
|
|
|
memory_key_padding_mask = (encoder_mask == 0)
|
|
|
else:
|
|
|
memory_key_padding_mask = None
|
|
|
|
|
|
|
|
|
|
|
|
decoder_output = self.transformer(
|
|
|
tgt=x,
|
|
|
memory=encoder_hidden,
|
|
|
tgt_mask=causal_mask,
|
|
|
memory_key_padding_mask=memory_key_padding_mask,
|
|
|
tgt_key_padding_mask=(decoder_mask == 0) if decoder_mask is not None else None
|
|
|
)
|
|
|
|
|
|
|
|
|
logits = self.output_projection(decoder_output)
|
|
|
|
|
|
return {
|
|
|
'logits': logits,
|
|
|
'hidden_states': decoder_output
|
|
|
}
|
|
|
|
|
|
@torch.no_grad()
|
|
|
def generate(
|
|
|
self,
|
|
|
encoder_hidden: torch.Tensor,
|
|
|
encoder_mask: Optional[torch.Tensor] = None,
|
|
|
max_length: int = 128,
|
|
|
temperature: float = 1.0,
|
|
|
top_k: int = 50,
|
|
|
top_p: float = 0.95
|
|
|
) -> torch.Tensor:
|
|
|
batch_size = encoder_hidden.size(0)
|
|
|
device = encoder_hidden.device
|
|
|
|
|
|
|
|
|
decoder_input_ids = torch.full((batch_size, 1), 257, device=device)
|
|
|
|
|
|
for _ in range(max_length - 1):
|
|
|
|
|
|
outputs = self.forward(encoder_hidden, decoder_input_ids, encoder_mask)
|
|
|
next_token_logits = outputs['logits'][:, -1, :] / temperature
|
|
|
|
|
|
|
|
|
if top_k > 0:
|
|
|
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
|
|
next_token_logits[indices_to_remove] = float('-inf')
|
|
|
|
|
|
|
|
|
if top_p < 1.0:
|
|
|
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
|
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
|
|
sorted_indices_to_remove[..., 0] = 0
|
|
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
|
|
|
next_token_logits[indices_to_remove] = float('-inf')
|
|
|
|
|
|
|
|
|
probs = F.softmax(next_token_logits, dim=-1)
|
|
|
next_tokens = torch.multinomial(probs, 1)
|
|
|
decoder_input_ids = torch.cat([decoder_input_ids, next_tokens], dim=-1)
|
|
|
|
|
|
|
|
|
if (next_tokens == 258).all():
|
|
|
break
|
|
|
|
|
|
return decoder_input_ids
|
|
|
|
|
|
|
|
|
class IntelligentTokenizerModel(nn.Module):
|
|
|
"""
|
|
|
Complete Intelligent Tokenizer Model v6.0
|
|
|
ํตํฉ ๋ชจ๋ธ - Encoder + Decoder + Cross-Attention
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
vocab_size: int = 260,
|
|
|
encoder_dims: List[int] = [384, 384, 512, 640, 768],
|
|
|
decoder_hidden: int = 768,
|
|
|
num_heads: int = 8,
|
|
|
num_decoder_layers: int = 6,
|
|
|
dropout: float = 0.1,
|
|
|
max_seq_len: int = 512
|
|
|
):
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
self.tokenizer = ByteTokenizer(max_seq_len)
|
|
|
self.encoder = ByteEncoder(vocab_size, encoder_dims, num_heads, dropout, max_seq_len)
|
|
|
self.decoder = TransformerDecoder(vocab_size, decoder_hidden, num_heads, num_decoder_layers, dropout, max_seq_len)
|
|
|
self.cross_attention = CrossAttention(encoder_dims[-1], num_heads, dropout)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
input_texts: Optional[List[str]] = None,
|
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
|
decoder_input_ids: Optional[torch.Tensor] = None,
|
|
|
labels: Optional[torch.Tensor] = None,
|
|
|
use_cross_attention: bool = True
|
|
|
) -> Dict[str, torch.Tensor]:
|
|
|
|
|
|
if input_texts is not None:
|
|
|
tokenized = self.tokenizer.encode_batch(input_texts)
|
|
|
input_ids = tokenized['input_ids']
|
|
|
attention_mask = tokenized['attention_mask']
|
|
|
|
|
|
|
|
|
batch_size, seq_len = input_ids.shape
|
|
|
device = input_ids.device
|
|
|
|
|
|
|
|
|
encoder_outputs = self.encoder(input_ids, attention_mask)
|
|
|
encoder_hidden = encoder_outputs['last_hidden_state']
|
|
|
|
|
|
|
|
|
assert encoder_hidden.size(-1) == 768, f"Encoder dim mismatch: {encoder_hidden.size(-1)}"
|
|
|
|
|
|
|
|
|
decoder_outputs = self.decoder(
|
|
|
encoder_hidden,
|
|
|
decoder_input_ids,
|
|
|
attention_mask
|
|
|
)
|
|
|
decoder_hidden = decoder_outputs['hidden_states']
|
|
|
|
|
|
|
|
|
cross_attn_outputs = None
|
|
|
relation_logits = None
|
|
|
|
|
|
if use_cross_attention and decoder_hidden is not None:
|
|
|
|
|
|
cross_attn_outputs = self.cross_attention(
|
|
|
query=decoder_hidden,
|
|
|
key=encoder_hidden,
|
|
|
query_mask=None,
|
|
|
key_mask=attention_mask
|
|
|
)
|
|
|
|
|
|
|
|
|
relation_logits = cross_attn_outputs['relation_logits']
|
|
|
|
|
|
|
|
|
enhanced_decoder = decoder_hidden + cross_attn_outputs['cross_attention']
|
|
|
|
|
|
|
|
|
if hasattr(self.decoder, 'output_projection'):
|
|
|
decoder_outputs['logits'] = self.decoder.output_projection(enhanced_decoder)
|
|
|
|
|
|
|
|
|
loss = None
|
|
|
if labels is not None:
|
|
|
|
|
|
loss_fct = nn.CrossEntropyLoss(ignore_index=self.tokenizer.PAD)
|
|
|
recon_loss = loss_fct(
|
|
|
decoder_outputs['logits'].reshape(-1, decoder_outputs['logits'].size(-1)),
|
|
|
labels.reshape(-1)
|
|
|
)
|
|
|
|
|
|
|
|
|
relation_loss = 0
|
|
|
if relation_logits is not None:
|
|
|
|
|
|
batch_identity = torch.zeros(batch_size, dtype=torch.long, device=device)
|
|
|
relation_loss = F.cross_entropy(relation_logits, batch_identity) * 0.1
|
|
|
|
|
|
loss = recon_loss + relation_loss
|
|
|
|
|
|
return {
|
|
|
'loss': loss,
|
|
|
'logits': decoder_outputs['logits'],
|
|
|
'encoder_hidden_states': encoder_hidden,
|
|
|
'decoder_hidden_states': decoder_hidden,
|
|
|
'pooled_output': encoder_outputs['pooled_output'],
|
|
|
'cross_attention': cross_attn_outputs['cross_attention'] if cross_attn_outputs else None,
|
|
|
'relation_logits': relation_logits,
|
|
|
'all_encoder_states': encoder_outputs.get('all_hidden_states', None)
|
|
|
}
|
|
|
|
|
|
def encode_text(self, text: str) -> torch.Tensor:
|
|
|
"""Encode single text to representation"""
|
|
|
tokenized = self.tokenizer.encode(text)
|
|
|
|
|
|
device = next(self.parameters()).device
|
|
|
input_ids = tokenized['input_ids'].unsqueeze(0).to(device)
|
|
|
attention_mask = tokenized['attention_mask'].unsqueeze(0).to(device)
|
|
|
|
|
|
with torch.no_grad():
|
|
|
outputs = self.encoder(input_ids, attention_mask)
|
|
|
|
|
|
return outputs['pooled_output'].squeeze(0)
|
|
|
|
|
|
def decode_representation(self, representation: torch.Tensor, max_length: int = 128) -> str:
|
|
|
"""Decode representation back to text"""
|
|
|
if representation.dim() == 1:
|
|
|
representation = representation.unsqueeze(0).unsqueeze(0)
|
|
|
elif representation.dim() == 2:
|
|
|
representation = representation.unsqueeze(1)
|
|
|
|
|
|
with torch.no_grad():
|
|
|
output_ids = self.decoder.generate(representation, max_length=max_length)
|
|
|
|
|
|
text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
return text
|
|
|
|
|
|
def compute_relation(self, text1: str, text2: str) -> torch.Tensor:
|
|
|
"""Compute relation between two texts"""
|
|
|
|
|
|
enc1 = self.encode_text(text1).unsqueeze(0).unsqueeze(0)
|
|
|
enc2 = self.encode_text(text2).unsqueeze(0).unsqueeze(0)
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
outputs = self.cross_attention(enc1, enc2)
|
|
|
|
|
|
return F.softmax(outputs['relation_logits'], dim=-1) |