Fix UTF-8 safe chunking, token boundary visualization, and embedding display
Browse files- Implemented UTF-8 safe text splitting to preserve character boundaries
- Show actual model-learned token boundaries instead of chunk boundaries
- Fixed embedding extraction using encoder_hidden_states key
- Added language list (English, Korean, Chinese, Japanese, Arabic, Spanish)
- Enhanced embedding statistics display
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
"""
|
| 2 |
B2NL (Byte-to-Natural-Language) Tokenizer Demo
|
| 3 |
Version 6.1.2 - 18.6:1 Compression with 100% Reconstruction
|
| 4 |
-
Enhanced with chunking,
|
| 5 |
"""
|
| 6 |
|
| 7 |
import gradio as gr
|
|
@@ -11,7 +11,6 @@ from pathlib import Path
|
|
| 11 |
import sys
|
| 12 |
import time
|
| 13 |
from typing import List, Tuple, Dict, Generator
|
| 14 |
-
# Removed matplotlib imports - using text display instead
|
| 15 |
|
| 16 |
# Import from local core directory
|
| 17 |
from core.unified_model import IntelligentTokenizerModelV61
|
|
@@ -65,7 +64,7 @@ def load_model(checkpoint_path=None):
|
|
| 65 |
return model, tokenizer
|
| 66 |
|
| 67 |
def visualize_groups(byte_seq: List[int], boundaries: torch.Tensor) -> str:
|
| 68 |
-
"""Visualize how bytes are grouped for compression"""
|
| 69 |
if boundaries is None:
|
| 70 |
return "No boundary information available"
|
| 71 |
|
|
@@ -108,13 +107,17 @@ def visualize_groups(byte_seq: List[int], boundaries: torch.Tensor) -> str:
|
|
| 108 |
return ' '.join(groups)
|
| 109 |
|
| 110 |
def format_embeddings(embeddings: torch.Tensor) -> str:
|
| 111 |
-
"""Format embeddings as text"""
|
| 112 |
if embeddings is None:
|
| 113 |
return "No embeddings available"
|
| 114 |
|
| 115 |
-
#
|
| 116 |
if embeddings.dim() > 1:
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
else:
|
| 119 |
embed_values = embeddings[:20].cpu().numpy()
|
| 120 |
|
|
@@ -134,8 +137,30 @@ def format_embeddings(embeddings: torch.Tensor) -> str:
|
|
| 134 |
|
| 135 |
return result
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
def process_chunk(text_chunk: str, chunk_idx: int) -> Dict:
|
| 138 |
-
"""Process a single chunk of text"""
|
| 139 |
model, tokenizer = load_model()
|
| 140 |
|
| 141 |
# Encode to bytes
|
|
@@ -169,18 +194,36 @@ def process_chunk(text_chunk: str, chunk_idx: int) -> Dict:
|
|
| 169 |
use_cross_attention=True # Enable cross-attention for better reconstruction
|
| 170 |
)
|
| 171 |
|
| 172 |
-
# Extract groups for visualization
|
| 173 |
groups_visual = "No groups"
|
| 174 |
num_tokens = 1
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
# Get embeddings
|
| 181 |
embeddings = None
|
| 182 |
-
if '
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
# Reconstruction
|
| 186 |
reconstructed = ""
|
|
@@ -218,25 +261,21 @@ def process_chunk(text_chunk: str, chunk_idx: int) -> Dict:
|
|
| 218 |
'embeddings': embeddings
|
| 219 |
}
|
| 220 |
|
| 221 |
-
def stream_process(text: str, chunk_size: int = 62, overlap: int =
|
| 222 |
-
"""Stream process text with
|
| 223 |
if not text:
|
| 224 |
yield {"error": "Please enter text"}
|
| 225 |
return
|
| 226 |
|
| 227 |
-
# Process in chunks
|
| 228 |
-
|
| 229 |
-
step = chunk_size - overlap
|
| 230 |
-
|
| 231 |
-
for chunk_idx, i in enumerate(range(0, len(text_bytes), step)):
|
| 232 |
-
chunk_bytes = text_bytes[i:i+chunk_size]
|
| 233 |
|
|
|
|
| 234 |
# Skip very small chunks
|
| 235 |
-
if len(
|
| 236 |
continue
|
| 237 |
|
| 238 |
try:
|
| 239 |
-
chunk_text = chunk_bytes.decode('utf-8', errors='ignore')
|
| 240 |
result = process_chunk(chunk_text, chunk_idx)
|
| 241 |
yield result
|
| 242 |
except Exception as e:
|
|
@@ -282,18 +321,28 @@ def process_text_full(text: str, show_embeddings: bool = False):
|
|
| 282 |
- Chunks Processed: {len(all_results)}
|
| 283 |
"""
|
| 284 |
|
| 285 |
-
# Format groups visualization
|
| 286 |
-
groups_text = "**
|
| 287 |
-
|
| 288 |
-
|
|
|
|
| 289 |
|
| 290 |
-
|
| 291 |
-
groups_text += f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
# Format embeddings as text
|
| 294 |
embed_text = ""
|
| 295 |
-
if show_embeddings
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
return stats, full_reconstructed, groups_text, embed_text, overall_compression
|
| 299 |
|
|
@@ -350,9 +399,8 @@ with gr.Blocks(
|
|
| 350 |
### 18.6:1 Average Compression with 100% Reconstruction!
|
| 351 |
|
| 352 |
Advanced features:
|
| 353 |
-
- **
|
| 354 |
-
- **
|
| 355 |
-
- **Group Visualization**: See how bytes are compressed into tokens
|
| 356 |
- **Embedding Display**: Visualize learned representations
|
| 357 |
- **Streaming Support**: Process text in real-time
|
| 358 |
""")
|
|
@@ -434,7 +482,7 @@ with gr.Blocks(
|
|
| 434 |
with gr.Tab("Streaming Demo"):
|
| 435 |
gr.Markdown("""
|
| 436 |
### Real-time Streaming Processing
|
| 437 |
-
Watch as text is processed chunk by chunk with
|
| 438 |
""")
|
| 439 |
|
| 440 |
stream_input = gr.Textbox(
|
|
@@ -490,9 +538,9 @@ with gr.Blocks(
|
|
| 490 |
- **Version**: 6.1.2 (best_model.pt - Epoch 233)
|
| 491 |
- **Architecture**: ByteEncoder + TransformerDecoder with Cross-Attention
|
| 492 |
- **Chunk Size**: 64 bytes (62 content + BOS + EOS)
|
| 493 |
-
- **
|
| 494 |
- **Boundary Learning**: 3-level hierarchical (char, word, phrase)
|
| 495 |
-
- **Languages
|
| 496 |
- **Average Compression**: 18.6:1 (varies by language)
|
| 497 |
- **Reconstruction**: 100% accuracy achieved
|
| 498 |
|
|
@@ -500,7 +548,7 @@ with gr.Blocks(
|
|
| 500 |
- Pure byte-level tokenization (no vocabulary)
|
| 501 |
- Learning-based compression without language rules
|
| 502 |
- Cross-attention for sequence relationships
|
| 503 |
-
-
|
| 504 |
|
| 505 |
---
|
| 506 |
*Note: v6.1.3 in training with 204 languages for universal coverage*
|
|
|
|
| 1 |
"""
|
| 2 |
B2NL (Byte-to-Natural-Language) Tokenizer Demo
|
| 3 |
Version 6.1.2 - 18.6:1 Compression with 100% Reconstruction
|
| 4 |
+
Enhanced with UTF-8 safe chunking, token boundary visualization, and embeddings
|
| 5 |
"""
|
| 6 |
|
| 7 |
import gradio as gr
|
|
|
|
| 11 |
import sys
|
| 12 |
import time
|
| 13 |
from typing import List, Tuple, Dict, Generator
|
|
|
|
| 14 |
|
| 15 |
# Import from local core directory
|
| 16 |
from core.unified_model import IntelligentTokenizerModelV61
|
|
|
|
| 64 |
return model, tokenizer
|
| 65 |
|
| 66 |
def visualize_groups(byte_seq: List[int], boundaries: torch.Tensor) -> str:
|
| 67 |
+
"""Visualize how bytes are grouped for compression based on model boundaries"""
|
| 68 |
if boundaries is None:
|
| 69 |
return "No boundary information available"
|
| 70 |
|
|
|
|
| 107 |
return ' '.join(groups)
|
| 108 |
|
| 109 |
def format_embeddings(embeddings: torch.Tensor) -> str:
|
| 110 |
+
"""Format embeddings as text with statistics"""
|
| 111 |
if embeddings is None:
|
| 112 |
return "No embeddings available"
|
| 113 |
|
| 114 |
+
# Handle different tensor shapes
|
| 115 |
if embeddings.dim() > 1:
|
| 116 |
+
# If multiple dimensions, flatten or take first
|
| 117 |
+
if embeddings.shape[0] > 20:
|
| 118 |
+
embed_values = embeddings[:20].cpu().numpy()
|
| 119 |
+
else:
|
| 120 |
+
embed_values = embeddings.flatten()[:20].cpu().numpy()
|
| 121 |
else:
|
| 122 |
embed_values = embeddings[:20].cpu().numpy()
|
| 123 |
|
|
|
|
| 137 |
|
| 138 |
return result
|
| 139 |
|
| 140 |
+
def utf8_safe_split(text: str, chunk_size: int = 62) -> List[str]:
|
| 141 |
+
"""Split text into chunks safely at UTF-8 character boundaries"""
|
| 142 |
+
chunks = []
|
| 143 |
+
current = ""
|
| 144 |
+
current_bytes = 0
|
| 145 |
+
|
| 146 |
+
for char in text:
|
| 147 |
+
char_bytes = len(char.encode('utf-8'))
|
| 148 |
+
if current_bytes + char_bytes > chunk_size:
|
| 149 |
+
if current: # Only append non-empty chunks
|
| 150 |
+
chunks.append(current)
|
| 151 |
+
current = char
|
| 152 |
+
current_bytes = char_bytes
|
| 153 |
+
else:
|
| 154 |
+
current += char
|
| 155 |
+
current_bytes += char_bytes
|
| 156 |
+
|
| 157 |
+
if current:
|
| 158 |
+
chunks.append(current)
|
| 159 |
+
|
| 160 |
+
return chunks
|
| 161 |
+
|
| 162 |
def process_chunk(text_chunk: str, chunk_idx: int) -> Dict:
|
| 163 |
+
"""Process a single chunk of text and extract token boundaries"""
|
| 164 |
model, tokenizer = load_model()
|
| 165 |
|
| 166 |
# Encode to bytes
|
|
|
|
| 194 |
use_cross_attention=True # Enable cross-attention for better reconstruction
|
| 195 |
)
|
| 196 |
|
| 197 |
+
# Extract groups for visualization - check all boundary types
|
| 198 |
groups_visual = "No groups"
|
| 199 |
num_tokens = 1
|
| 200 |
+
boundaries = None
|
| 201 |
+
|
| 202 |
+
# Check multiple boundary types in order of preference
|
| 203 |
+
for boundary_key in ['eojeol_boundaries', 'char_boundaries', 'phrase_boundaries']:
|
| 204 |
+
if boundary_key in outputs:
|
| 205 |
+
boundaries = outputs[boundary_key]
|
| 206 |
+
groups_visual = visualize_groups(byte_seq, boundaries)
|
| 207 |
+
boundary_binary = torch.argmax(boundaries, dim=-1)[0]
|
| 208 |
+
num_tokens = torch.sum(boundary_binary == 1).item() + 1
|
| 209 |
+
break
|
| 210 |
+
|
| 211 |
+
# If no boundaries found, show entire chunk as one token
|
| 212 |
+
if boundaries is None:
|
| 213 |
+
groups_visual = f"<{text_chunk}>"
|
| 214 |
+
num_tokens = 1
|
| 215 |
|
| 216 |
+
# Get embeddings - check correct key (encoder_hidden_states)
|
| 217 |
embeddings = None
|
| 218 |
+
if 'encoder_hidden_states' in outputs:
|
| 219 |
+
encoder_states = outputs['encoder_hidden_states']
|
| 220 |
+
if encoder_states is not None:
|
| 221 |
+
if encoder_states.dim() >= 3:
|
| 222 |
+
embeddings = encoder_states[0, 0] # First token embedding
|
| 223 |
+
elif encoder_states.dim() == 2:
|
| 224 |
+
embeddings = encoder_states[0] # First row
|
| 225 |
+
elif 'pooled_output' in outputs:
|
| 226 |
+
embeddings = outputs['pooled_output'][0] if outputs['pooled_output'] is not None else None
|
| 227 |
|
| 228 |
# Reconstruction
|
| 229 |
reconstructed = ""
|
|
|
|
| 261 |
'embeddings': embeddings
|
| 262 |
}
|
| 263 |
|
| 264 |
+
def stream_process(text: str, chunk_size: int = 62, overlap: int = 0) -> Generator:
|
| 265 |
+
"""Stream process text with UTF-8 safe chunking"""
|
| 266 |
if not text:
|
| 267 |
yield {"error": "Please enter text"}
|
| 268 |
return
|
| 269 |
|
| 270 |
+
# Process in UTF-8 safe chunks (no overlap for simplicity with UTF-8 boundaries)
|
| 271 |
+
chunks = utf8_safe_split(text, chunk_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
+
for chunk_idx, chunk_text in enumerate(chunks):
|
| 274 |
# Skip very small chunks
|
| 275 |
+
if len(chunk_text) < 3 and chunk_idx > 0:
|
| 276 |
continue
|
| 277 |
|
| 278 |
try:
|
|
|
|
| 279 |
result = process_chunk(chunk_text, chunk_idx)
|
| 280 |
yield result
|
| 281 |
except Exception as e:
|
|
|
|
| 321 |
- Chunks Processed: {len(all_results)}
|
| 322 |
"""
|
| 323 |
|
| 324 |
+
# Format groups visualization showing actual token boundaries
|
| 325 |
+
groups_text = "**Token Boundaries (< > shows model-learned token groups):**\n\n"
|
| 326 |
+
|
| 327 |
+
# Show more chunks for shorter texts
|
| 328 |
+
max_chunks_to_show = min(len(all_results), 5)
|
| 329 |
|
| 330 |
+
for i, result in enumerate(all_results[:max_chunks_to_show]):
|
| 331 |
+
groups_text += f"Chunk {i+1}: {result['groups']}\n"
|
| 332 |
+
if result['num_tokens'] > 1:
|
| 333 |
+
groups_text += f" β {result['num_tokens']} tokens detected\n"
|
| 334 |
+
groups_text += "\n"
|
| 335 |
+
|
| 336 |
+
if len(all_results) > max_chunks_to_show:
|
| 337 |
+
groups_text += f"... and {len(all_results)-max_chunks_to_show} more chunks\n"
|
| 338 |
|
| 339 |
# Format embeddings as text
|
| 340 |
embed_text = ""
|
| 341 |
+
if show_embeddings:
|
| 342 |
+
if all_results and all_results[0]['embeddings'] is not None:
|
| 343 |
+
embed_text = format_embeddings(all_results[0]['embeddings'])
|
| 344 |
+
else:
|
| 345 |
+
embed_text = "**No embeddings available**\n(Model may not have encoder_hidden_states output)"
|
| 346 |
|
| 347 |
return stats, full_reconstructed, groups_text, embed_text, overall_compression
|
| 348 |
|
|
|
|
| 399 |
### 18.6:1 Average Compression with 100% Reconstruction!
|
| 400 |
|
| 401 |
Advanced features:
|
| 402 |
+
- **UTF-8 Safe Chunking**: Preserves character boundaries
|
| 403 |
+
- **Token Boundary Visualization**: Shows model-learned token groups
|
|
|
|
| 404 |
- **Embedding Display**: Visualize learned representations
|
| 405 |
- **Streaming Support**: Process text in real-time
|
| 406 |
""")
|
|
|
|
| 482 |
with gr.Tab("Streaming Demo"):
|
| 483 |
gr.Markdown("""
|
| 484 |
### Real-time Streaming Processing
|
| 485 |
+
Watch as text is processed chunk by chunk with UTF-8 safe splitting.
|
| 486 |
""")
|
| 487 |
|
| 488 |
stream_input = gr.Textbox(
|
|
|
|
| 538 |
- **Version**: 6.1.2 (best_model.pt - Epoch 233)
|
| 539 |
- **Architecture**: ByteEncoder + TransformerDecoder with Cross-Attention
|
| 540 |
- **Chunk Size**: 64 bytes (62 content + BOS + EOS)
|
| 541 |
+
- **UTF-8 Safe**: Preserves character boundaries
|
| 542 |
- **Boundary Learning**: 3-level hierarchical (char, word, phrase)
|
| 543 |
+
- **Languages Trained**: English, Korean, Chinese, Japanese, Arabic, Spanish
|
| 544 |
- **Average Compression**: 18.6:1 (varies by language)
|
| 545 |
- **Reconstruction**: 100% accuracy achieved
|
| 546 |
|
|
|
|
| 548 |
- Pure byte-level tokenization (no vocabulary)
|
| 549 |
- Learning-based compression without language rules
|
| 550 |
- Cross-attention for sequence relationships
|
| 551 |
+
- Model-learned token boundaries (not fixed chunks)
|
| 552 |
|
| 553 |
---
|
| 554 |
*Note: v6.1.3 in training with 204 languages for universal coverage*
|