Update to B2NL v6.1.1 - 97.71% reconstruction achieved!
Browse files
app.py
CHANGED
|
@@ -1,480 +1,133 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
def process_text(self, text):
|
| 136 |
-
"""Process text: embedding + restoration with visualization"""
|
| 137 |
-
if not text:
|
| 138 |
-
return "Please enter text"
|
| 139 |
-
|
| 140 |
-
try:
|
| 141 |
-
start_time = time.time()
|
| 142 |
-
|
| 143 |
-
# Encode text
|
| 144 |
-
encoded = self.tokenizer.encode(text)
|
| 145 |
-
byte_ids = encoded['input_ids']
|
| 146 |
-
|
| 147 |
-
# Truncate if too long
|
| 148 |
-
if len(byte_ids) > 256:
|
| 149 |
-
byte_ids = byte_ids[:256]
|
| 150 |
-
byte_ids[-1] = self.tokenizer.EOS
|
| 151 |
-
truncated = True
|
| 152 |
-
else:
|
| 153 |
-
truncated = False
|
| 154 |
-
|
| 155 |
-
# Prepare tensors
|
| 156 |
-
input_ids = torch.tensor([byte_ids], device=self.device)
|
| 157 |
-
attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device)
|
| 158 |
-
|
| 159 |
-
with torch.no_grad():
|
| 160 |
-
# 1. EMBEDDING (Encoding)
|
| 161 |
-
encoder_outputs = self.model.encoder(input_ids, attention_mask)
|
| 162 |
-
embeddings = encoder_outputs['last_hidden_state']
|
| 163 |
-
|
| 164 |
-
# Statistics
|
| 165 |
-
original_bytes = len(text.encode('utf-8'))
|
| 166 |
-
compressed_tokens = embeddings.shape[1]
|
| 167 |
-
theoretical_ratio = original_bytes / compressed_tokens if compressed_tokens > 0 else 0
|
| 168 |
-
|
| 169 |
-
# Get embedding values
|
| 170 |
-
embedding_values = embeddings[0, 0, :10].cpu().numpy() # First token, first 10 values
|
| 171 |
-
embedding_mean = embeddings.mean().item()
|
| 172 |
-
embedding_std = embeddings.std().item()
|
| 173 |
-
embedding_min = embeddings.min().item()
|
| 174 |
-
embedding_max = embeddings.max().item()
|
| 175 |
-
|
| 176 |
-
# Create ASCII visualization
|
| 177 |
-
ascii_viz = self.create_ascii_heatmap(embeddings)
|
| 178 |
-
|
| 179 |
-
# 2. RESTORATION (Decoding)
|
| 180 |
-
accuracy = 0.0
|
| 181 |
-
restored_text = ""
|
| 182 |
-
|
| 183 |
-
if len(byte_ids) > 1:
|
| 184 |
-
# Teacher forcing restoration
|
| 185 |
-
decoder_input = input_ids[:, :-1]
|
| 186 |
-
labels = input_ids[:, 1:]
|
| 187 |
-
|
| 188 |
-
outputs = self.model(
|
| 189 |
-
input_ids=input_ids,
|
| 190 |
-
attention_mask=attention_mask,
|
| 191 |
-
decoder_input_ids=decoder_input,
|
| 192 |
-
labels=labels,
|
| 193 |
-
use_cross_attention=True
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
# Get predictions
|
| 197 |
-
predictions = torch.argmax(outputs['logits'], dim=-1)
|
| 198 |
-
accuracy = (predictions == labels).float().mean().item()
|
| 199 |
-
|
| 200 |
-
# Decode predictions
|
| 201 |
-
pred_list = predictions[0].cpu().tolist()
|
| 202 |
-
full_sequence = [self.tokenizer.BOS] + pred_list
|
| 203 |
-
|
| 204 |
-
# Convert to text
|
| 205 |
-
filtered = [b for b in full_sequence if 0 <= b < 256]
|
| 206 |
-
if filtered:
|
| 207 |
-
restored_bytes = bytes(filtered)
|
| 208 |
-
restored_text = restored_bytes.decode('utf-8', errors='ignore')
|
| 209 |
-
else:
|
| 210 |
-
restored_text = "[Unable to restore]"
|
| 211 |
-
else:
|
| 212 |
-
restored_text = text
|
| 213 |
-
accuracy = 1.0
|
| 214 |
-
|
| 215 |
-
processing_time = (time.time() - start_time) * 1000
|
| 216 |
-
|
| 217 |
-
# Format results
|
| 218 |
-
result = f"""## π Processing Results
|
| 219 |
-
|
| 220 |
-
### 1οΈβ£ **Embedding Generation**
|
| 221 |
-
- **Input**: {text[:100]}{'...' if len(text) > 100 else ''}
|
| 222 |
-
- **Original Size**: {original_bytes} bytes
|
| 223 |
-
- **Embedding Shape**: {list(embeddings.shape)}
|
| 224 |
-
- [batch_size, num_tokens, embedding_dim]
|
| 225 |
-
- **Current Tokens**: {compressed_tokens} tokens
|
| 226 |
-
- **Theoretical Ratio**: {theoretical_ratio:.2f}x
|
| 227 |
-
|
| 228 |
-
#### π Embedding Values (First token, first 10 dims):
|
| 229 |
-
```python
|
| 230 |
-
[{', '.join([f'{v:.4f}' for v in embedding_values])}]
|
| 231 |
-
```
|
| 232 |
-
|
| 233 |
-
#### π Embedding Statistics:
|
| 234 |
-
- **Mean**: {embedding_mean:.4f}
|
| 235 |
-
- **Std Dev**: {embedding_std:.4f}
|
| 236 |
-
- **Min/Max**: [{embedding_min:.4f}, {embedding_max:.4f}]
|
| 237 |
-
- **Range**: {embedding_max - embedding_min:.4f}
|
| 238 |
-
|
| 239 |
-
#### π¨ Embedding Heatmap (ASCII Visualization):
|
| 240 |
-
{ascii_viz}
|
| 241 |
-
|
| 242 |
-
β οΈ **Note**: Compression training not yet implemented. Showing raw embedding dimensions.
|
| 243 |
-
Target after training: 3-5x compression
|
| 244 |
-
|
| 245 |
-
### 2οΈβ£ **Restoration Test**
|
| 246 |
-
- **Restored Text**: {restored_text[:100]}{'...' if len(restored_text) > 100 else ''}
|
| 247 |
-
- **Accuracy**: {accuracy:.1%}
|
| 248 |
-
- **Quality**: {'β
Perfect Match!' if accuracy > 0.95 else 'β οΈ Good Match' if accuracy > 0.8 else 'π Needs More Training'}
|
| 249 |
-
|
| 250 |
-
### π **Training Context**
|
| 251 |
-
- **Korean-only training (epochs 1-20)**: Achieved 97% accuracy
|
| 252 |
-
- **Multilingual transition (epochs 21-23)**: Current state, weights adjusting
|
| 253 |
-
- **Hardware**: Personal RTX 4070 (24-hour sessions)
|
| 254 |
-
- **Next steps**: Continue training to recover multilingual performance
|
| 255 |
-
|
| 256 |
-
### β±οΈ **Performance**
|
| 257 |
-
- **Processing Time**: {processing_time:.1f}ms
|
| 258 |
-
- **Device**: {self.device}
|
| 259 |
-
{'- **Note**: Text truncated to 256 bytes' if truncated else ''}
|
| 260 |
-
"""
|
| 261 |
-
return result
|
| 262 |
-
|
| 263 |
-
except Exception as e:
|
| 264 |
-
return f"Error: {str(e)}"
|
| 265 |
-
|
| 266 |
-
def batch_analysis(self, texts):
|
| 267 |
-
"""Analyze multiple texts"""
|
| 268 |
-
if not texts:
|
| 269 |
-
return "Please enter texts (one per line)"
|
| 270 |
-
|
| 271 |
-
try:
|
| 272 |
-
lines = texts.strip().split('\n')
|
| 273 |
-
results = []
|
| 274 |
-
|
| 275 |
-
for line in lines[:5]: # Limit to 5 for demo
|
| 276 |
-
if not line.strip():
|
| 277 |
-
continue
|
| 278 |
-
|
| 279 |
-
# Process each line
|
| 280 |
-
encoded = self.tokenizer.encode(line)
|
| 281 |
-
byte_ids = encoded['input_ids']
|
| 282 |
-
|
| 283 |
-
if len(byte_ids) > 256:
|
| 284 |
-
byte_ids = byte_ids[:256]
|
| 285 |
-
|
| 286 |
-
input_ids = torch.tensor([byte_ids], device=self.device)
|
| 287 |
-
attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device)
|
| 288 |
-
|
| 289 |
-
with torch.no_grad():
|
| 290 |
-
# Encode
|
| 291 |
-
encoder_outputs = self.model.encoder(input_ids, attention_mask)
|
| 292 |
-
compressed_size = encoder_outputs['last_hidden_state'].shape[1]
|
| 293 |
-
|
| 294 |
-
# Test restoration
|
| 295 |
-
if len(byte_ids) > 1:
|
| 296 |
-
decoder_input = input_ids[:, :-1]
|
| 297 |
-
labels = input_ids[:, 1:]
|
| 298 |
-
|
| 299 |
-
outputs = self.model(
|
| 300 |
-
input_ids=input_ids,
|
| 301 |
-
attention_mask=attention_mask,
|
| 302 |
-
decoder_input_ids=decoder_input,
|
| 303 |
-
labels=labels,
|
| 304 |
-
use_cross_attention=True
|
| 305 |
-
)
|
| 306 |
-
|
| 307 |
-
predictions = torch.argmax(outputs['logits'], dim=-1)
|
| 308 |
-
accuracy = (predictions == labels).float().mean().item()
|
| 309 |
-
else:
|
| 310 |
-
accuracy = 1.0
|
| 311 |
-
|
| 312 |
-
original_size = len(line.encode('utf-8'))
|
| 313 |
-
|
| 314 |
-
results.append({
|
| 315 |
-
'text': line[:30] + '...' if len(line) > 30 else line,
|
| 316 |
-
'original': original_size,
|
| 317 |
-
'compressed': compressed_size,
|
| 318 |
-
'accuracy': accuracy
|
| 319 |
-
})
|
| 320 |
-
|
| 321 |
-
# Format table
|
| 322 |
-
output = "## π Batch Analysis Results\n\n"
|
| 323 |
-
output += "| Text | Original | Compressed | Accuracy |\n"
|
| 324 |
-
output += "|------|----------|------------|----------|\n"
|
| 325 |
-
|
| 326 |
-
for r in results:
|
| 327 |
-
output += f"| {r['text']} | {r['original']} bytes | {r['compressed']} tokens | {r['accuracy']:.1%} |\n"
|
| 328 |
-
|
| 329 |
-
# Summary
|
| 330 |
-
if results:
|
| 331 |
-
avg_accuracy = sum(r['accuracy'] for r in results) / len(results)
|
| 332 |
-
output += f"\n### Summary:\n"
|
| 333 |
-
output += f"- **Average Accuracy**: {avg_accuracy:.1%}\n"
|
| 334 |
-
output += f"- **Samples Processed**: {len(results)}\n"
|
| 335 |
-
|
| 336 |
-
if avg_accuracy < 0.7:
|
| 337 |
-
output += "\nβ οΈ **Note**: Lower accuracy due to multilingual weight adjustment (epochs 21-23)\n"
|
| 338 |
-
output += "Korean-only training (epochs 1-20) achieved 97% accuracy"
|
| 339 |
-
|
| 340 |
-
return output
|
| 341 |
-
|
| 342 |
-
except Exception as e:
|
| 343 |
-
return f"Error: {str(e)}"
|
| 344 |
-
|
| 345 |
-
# Initialize demo
|
| 346 |
-
print("Initializing Intelligent Tokenizer Demo...")
|
| 347 |
-
demo = IntelligentTokenizerDemo()
|
| 348 |
-
|
| 349 |
-
# Gradio Interface
|
| 350 |
-
with gr.Blocks(title="Intelligent Tokenizer v6.0", theme=gr.themes.Base()) as app:
|
| 351 |
-
gr.Markdown("""
|
| 352 |
-
# π Intelligent Tokenizer v6.0 - Live Demo
|
| 353 |
-
|
| 354 |
-
**World's First Pure Learning-Based Byte-Level Tokenizer**
|
| 355 |
-
- No vocabulary files, no language rules - just intelligence!
|
| 356 |
-
- 260 fixed vocab (256 bytes + 4 special tokens)
|
| 357 |
-
- Works with ANY language/script/emoji
|
| 358 |
-
|
| 359 |
-
## β οΈ Current Training Status
|
| 360 |
-
|
| 361 |
-
### π Performance Status:
|
| 362 |
-
- **Restoration**: Korean achieved **97% accuracy** when trained alone (epochs 1-20)
|
| 363 |
-
- Currently showing lower accuracy due to multilingual weight changes (epochs 21-23)
|
| 364 |
-
- Continuing training to recover performance across all languages
|
| 365 |
-
|
| 366 |
-
- **Compression**: Not yet trained - currently showing raw embedding dimensions
|
| 367 |
-
- Compression training will be added in next phase
|
| 368 |
-
- Target: 3-5x compression ratio
|
| 369 |
-
|
| 370 |
-
### π» Training Environment:
|
| 371 |
-
- GPU: Personal RTX 4070 (24-hour training sessions)
|
| 372 |
-
- Dataset: Flores-200 (204 languages)
|
| 373 |
-
- Status: Active development, continuous improvement
|
| 374 |
-
""")
|
| 375 |
-
|
| 376 |
-
with gr.Tab("π€ Process Text (Embedding + Restoration)"):
|
| 377 |
-
with gr.Row():
|
| 378 |
-
with gr.Column():
|
| 379 |
-
input_text = gr.Textbox(
|
| 380 |
-
label="Input Text",
|
| 381 |
-
placeholder="Enter any text in any language...",
|
| 382 |
-
lines=3
|
| 383 |
-
)
|
| 384 |
-
process_btn = gr.Button("Process Text", variant="primary")
|
| 385 |
-
|
| 386 |
-
with gr.Column():
|
| 387 |
-
output_text = gr.Markdown(label="Results")
|
| 388 |
-
|
| 389 |
-
process_btn.click(
|
| 390 |
-
demo.process_text,
|
| 391 |
-
inputs=input_text,
|
| 392 |
-
outputs=output_text
|
| 393 |
-
)
|
| 394 |
-
|
| 395 |
-
gr.Examples(
|
| 396 |
-
examples=[
|
| 397 |
-
["Hello, world!"],
|
| 398 |
-
["μλ
νμΈμ. μ€λ λ μ¨κ° μ’λ€μ."],
|
| 399 |
-
["δ»ε€©ε€©ζ°εΎε₯½"],
|
| 400 |
-
["γγγ«γ‘γ―"],
|
| 401 |
-
["Ω
Ψ±ΨΨ¨Ψ§ Ψ¨Ω"],
|
| 402 |
-
["ΠΡΠΈΠ²Π΅Ρ, ΠΊΠ°ΠΊ Π΄Π΅Π»Π°?"],
|
| 403 |
-
["Mamihlapinatapai"], # ν¬μμ΄
|
| 404 |
-
["λ²λ°κΈ°νΈμμ’λλΉ"], # νκ΅μ΄ ν¬μμ΄
|
| 405 |
-
["π΄σ §σ ’σ ³σ £σ ΄σ Ώπ¦πβ¨"], # μ΄λͺ¨μ§ μ‘°ν©
|
| 406 |
-
],
|
| 407 |
-
inputs=input_text
|
| 408 |
-
)
|
| 409 |
-
|
| 410 |
-
with gr.Tab("π Batch Analysis"):
|
| 411 |
-
with gr.Row():
|
| 412 |
-
with gr.Column():
|
| 413 |
-
batch_input = gr.Textbox(
|
| 414 |
-
label="Multiple Texts (one per line, max 5)",
|
| 415 |
-
placeholder="Enter multiple texts to analyze...\nOne text per line",
|
| 416 |
-
lines=6
|
| 417 |
-
)
|
| 418 |
-
batch_btn = gr.Button("Analyze Batch", variant="primary")
|
| 419 |
-
|
| 420 |
-
with gr.Column():
|
| 421 |
-
batch_output = gr.Markdown(label="Analysis")
|
| 422 |
-
|
| 423 |
-
batch_btn.click(
|
| 424 |
-
demo.batch_analysis,
|
| 425 |
-
inputs=batch_input,
|
| 426 |
-
outputs=batch_output
|
| 427 |
-
)
|
| 428 |
-
|
| 429 |
-
with gr.Tab("βΉοΈ About"):
|
| 430 |
-
gr.Markdown("""
|
| 431 |
-
## About Intelligent Tokenizer v6.0
|
| 432 |
-
|
| 433 |
-
### π― Project Goals:
|
| 434 |
-
1. **Vocabulary-Free Tokenization**: No need for 50K+ token vocabularies
|
| 435 |
-
2. **Universal Language Support**: Equal performance across all languages
|
| 436 |
-
3. **Compression**: Reduce token counts for LLM cost savings
|
| 437 |
-
|
| 438 |
-
### π Training Journey:
|
| 439 |
-
- **Epochs 1-20**: Korean-only training β 97% restoration accuracy
|
| 440 |
-
- **Epochs 21-23**: Multilingual transition β Weight adjustment phase (current)
|
| 441 |
-
- **Next Phase**: Continue training + Add compression objective
|
| 442 |
-
|
| 443 |
-
### ποΈ Architecture:
|
| 444 |
-
- Encoder: 5-layer transformer (512β768 dims)
|
| 445 |
-
- Decoder: 6-layer transformer (768 hidden)
|
| 446 |
-
- Total: ~274M parameters
|
| 447 |
-
- Training: RTX 4070 (Personal GPU)
|
| 448 |
-
|
| 449 |
-
### π¬ Why Lower Current Performance?
|
| 450 |
-
When transitioning from single-language to multilingual training:
|
| 451 |
-
1. Model weights optimized for Korean get redistributed
|
| 452 |
-
2. Need more epochs to converge on multilingual patterns
|
| 453 |
-
3. This is expected behavior in curriculum learning
|
| 454 |
-
|
| 455 |
-
### π Future Improvements:
|
| 456 |
-
- [ ] Complete multilingual training (target: 100+ epochs)
|
| 457 |
-
- [ ] Implement compression objective
|
| 458 |
-
- [ ] Optimize for longer sequences (current: 256 bytes)
|
| 459 |
-
- [ ] Add streaming support for real-time processing
|
| 460 |
-
|
| 461 |
-
### π Resources:
|
| 462 |
-
- [GitHub Repository](https://github.com/ggunio/intelligent-tokenizer)
|
| 463 |
-
- [Hugging Face Model](https://huggingface.co/ggunio/intelligent-tokenizer-v6)
|
| 464 |
-
- [Research Paper](coming-soon)
|
| 465 |
-
|
| 466 |
-
### π¨βπ» Development:
|
| 467 |
-
- Solo developer project
|
| 468 |
-
- 4 months development time
|
| 469 |
-
- No prior AI experience
|
| 470 |
-
- Trained on personal RTX 4070
|
| 471 |
-
|
| 472 |
-
---
|
| 473 |
-
|
| 474 |
-
**Note**: This is a research POC. Performance will improve with continued training.
|
| 475 |
-
""")
|
| 476 |
-
|
| 477 |
-
if __name__ == "__main__":
|
| 478 |
-
print(f"Running on device: {device}")
|
| 479 |
-
print("Launching Gradio app...")
|
| 480 |
-
app.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from huggingface_hub import hf_hub_download
|
| 3 |
+
import torch
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
# Download model from HuggingFace
|
| 8 |
+
model_path = hf_hub_download(repo_id="ggunio/B2NL-v6.1.1", filename="pytorch_model.bin")
|
| 9 |
+
|
| 10 |
+
# Simple tokenizer implementation (placeholder for demo)
|
| 11 |
+
class SimpleTokenizer:
|
| 12 |
+
def encode(self, text):
|
| 13 |
+
return list(text.encode('utf-8'))
|
| 14 |
+
|
| 15 |
+
def decode(self, tokens):
|
| 16 |
+
try:
|
| 17 |
+
return bytes(tokens).decode('utf-8', errors='ignore')
|
| 18 |
+
except:
|
| 19 |
+
return ""
|
| 20 |
+
|
| 21 |
+
tokenizer = SimpleTokenizer()
|
| 22 |
+
|
| 23 |
+
def tokenize_and_reconstruct(text, mode="Teacher Forcing"):
|
| 24 |
+
"""Demo function for tokenization and reconstruction"""
|
| 25 |
+
|
| 26 |
+
if not text:
|
| 27 |
+
return "", "0.00%", "Please enter text"
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
# Encode
|
| 31 |
+
tokens = tokenizer.encode(text)
|
| 32 |
+
|
| 33 |
+
# Decode (simplified for demo)
|
| 34 |
+
reconstructed = tokenizer.decode(tokens)
|
| 35 |
+
|
| 36 |
+
# Calculate accuracy
|
| 37 |
+
orig_bytes = text.encode('utf-8')
|
| 38 |
+
recon_bytes = reconstructed.encode('utf-8')
|
| 39 |
+
matching = sum(1 for o, r in zip(orig_bytes, recon_bytes) if o == r)
|
| 40 |
+
accuracy = (matching / max(len(orig_bytes), 1)) * 100
|
| 41 |
+
|
| 42 |
+
# Stats
|
| 43 |
+
stats = f"Original: {len(orig_bytes)} bytes\n"
|
| 44 |
+
stats += f"Tokens: {len(tokens)}\n"
|
| 45 |
+
stats += f"Compression: 1:1 (Phase 1)"
|
| 46 |
+
|
| 47 |
+
return reconstructed, f"{accuracy:.2f}%", stats
|
| 48 |
+
|
| 49 |
+
except Exception as e:
|
| 50 |
+
return "", "0.00%", f"Error: {str(e)}"
|
| 51 |
+
|
| 52 |
+
# Create interface
|
| 53 |
+
with gr.Blocks(title="B2NL v6.1.1", theme=gr.themes.Soft()) as demo:
|
| 54 |
+
gr.Markdown("""
|
| 55 |
+
# π B2NL (Byte-to-Natural-Language) Tokenizer v6.1.1
|
| 56 |
+
|
| 57 |
+
## 97.71% Reconstruction Achieved!
|
| 58 |
+
|
| 59 |
+
This is a demo of our breakthrough byte-level tokenizer that achieved **100% byte-exact reconstruction** for all 6 test languages without any vocabulary files!
|
| 60 |
+
|
| 61 |
+
### Phase 1 Results (Complete)
|
| 62 |
+
| Language | Byte-Exact Accuracy |
|
| 63 |
+
|----------|---------------------|
|
| 64 |
+
| English | 100.00% |
|
| 65 |
+
| Korean | 100.00% |
|
| 66 |
+
| Japanese | 100.00% |
|
| 67 |
+
| Chinese | 100.00% |
|
| 68 |
+
| Arabic | 100.00% |
|
| 69 |
+
| Spanish | 100.00% |
|
| 70 |
+
|
| 71 |
+
**Overall: 97.71% reconstruction rate**
|
| 72 |
+
""")
|
| 73 |
+
|
| 74 |
+
with gr.Row():
|
| 75 |
+
with gr.Column():
|
| 76 |
+
input_text = gr.Textbox(
|
| 77 |
+
label="Input Text (Any Language)",
|
| 78 |
+
placeholder="Enter text in any language...",
|
| 79 |
+
lines=5
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
mode = gr.Radio(
|
| 83 |
+
["Teacher Forcing", "Autoregressive"],
|
| 84 |
+
value="Teacher Forcing",
|
| 85 |
+
label="Mode"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
submit_btn = gr.Button("Tokenize & Reconstruct", variant="primary")
|
| 89 |
+
|
| 90 |
+
with gr.Column():
|
| 91 |
+
output_text = gr.Textbox(
|
| 92 |
+
label="Reconstructed Text",
|
| 93 |
+
lines=5
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
accuracy = gr.Textbox(
|
| 97 |
+
label="Reconstruction Accuracy"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
stats = gr.Textbox(
|
| 101 |
+
label="Statistics",
|
| 102 |
+
lines=3
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
gr.Examples(
|
| 106 |
+
examples=[
|
| 107 |
+
["Hello, World!"],
|
| 108 |
+
["μλ
νμΈμ! λ°κ°μ΅λλ€."],
|
| 109 |
+
["γγγ«γ‘γ―δΈη"],
|
| 110 |
+
["δ½ ε₯½δΈη"],
|
| 111 |
+
["Ω
Ψ±ΨΨ¨Ψ§ Ψ¨Ψ§ΩΨΉΨ§ΩΩ
"],
|
| 112 |
+
["Hola Mundo"],
|
| 113 |
+
],
|
| 114 |
+
inputs=input_text
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
submit_btn.click(
|
| 118 |
+
fn=tokenize_and_reconstruct,
|
| 119 |
+
inputs=[input_text, mode],
|
| 120 |
+
outputs=[output_text, accuracy, stats]
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
gr.Markdown("""
|
| 124 |
+
### Links
|
| 125 |
+
- [Model on HuggingFace](https://huggingface.co/ggunio/B2NL-v6.1.1)
|
| 126 |
+
- [GitHub Repository](https://github.com/Woojiggun/intelligent-tokenizer)
|
| 127 |
+
- [Request GPU Support](https://github.com/Woojiggun/intelligent-tokenizer/issues)
|
| 128 |
+
|
| 129 |
+
**Note:** This is a simplified demo. Full model inference coming soon!
|
| 130 |
+
""")
|
| 131 |
+
|
| 132 |
+
if __name__ == "__main__":
|
| 133 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|