Upload inference.py with huggingface_hub
Browse files- inference.py +297 -0
inference.py
ADDED
|
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Intelligent Tokenizer v6.0 - Inference Module
|
| 5 |
+
임베딩과 복원 기능
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import sys
|
| 10 |
+
import io
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from typing import Dict, List, Optional, Tuple
|
| 13 |
+
|
| 14 |
+
# UTF-8 인코딩 설정
|
| 15 |
+
if sys.stdout.encoding != 'utf-8':
|
| 16 |
+
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
|
| 17 |
+
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
|
| 18 |
+
|
| 19 |
+
sys.path.append(str(Path(__file__).parent))
|
| 20 |
+
|
| 21 |
+
from core.boundary_aware_model import BoundaryAwareTokenizerModel
|
| 22 |
+
from src.core.byte_tokenizer_v6 import ByteTokenizerV6
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class IntelligentTokenizer:
|
| 26 |
+
"""Intelligent Tokenizer for embedding and restoration"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, checkpoint_path: str = "checkpoints/latest_checkpoint.pt", device: str = None):
|
| 29 |
+
"""
|
| 30 |
+
Initialize tokenizer
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
checkpoint_path: Path to model checkpoint
|
| 34 |
+
device: Device to use ('cuda', 'cpu', or None for auto)
|
| 35 |
+
"""
|
| 36 |
+
if device is None:
|
| 37 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 38 |
+
else:
|
| 39 |
+
self.device = torch.device(device)
|
| 40 |
+
|
| 41 |
+
print(f"Initializing Intelligent Tokenizer v6.0...")
|
| 42 |
+
print(f"Device: {self.device}")
|
| 43 |
+
|
| 44 |
+
# Load checkpoint
|
| 45 |
+
checkpoint_path = Path(checkpoint_path)
|
| 46 |
+
if not checkpoint_path.exists():
|
| 47 |
+
raise FileNotFoundError(f"Checkpoint not found: {checkpoint_path}")
|
| 48 |
+
|
| 49 |
+
checkpoint = torch.load(checkpoint_path, map_location=self.device, weights_only=False)
|
| 50 |
+
|
| 51 |
+
# Initialize model
|
| 52 |
+
self.model = BoundaryAwareTokenizerModel(**checkpoint['model_config'])
|
| 53 |
+
self.model.load_state_dict(checkpoint['model_state_dict'])
|
| 54 |
+
self.model = self.model.to(self.device)
|
| 55 |
+
self.model.eval()
|
| 56 |
+
|
| 57 |
+
# Initialize tokenizer
|
| 58 |
+
self.tokenizer = ByteTokenizerV6()
|
| 59 |
+
self.max_chunk_size = 250 # Safe margin for 256 byte limit
|
| 60 |
+
|
| 61 |
+
print(f"Model loaded: Epoch {checkpoint['epoch']}, Loss {checkpoint['loss']:.4f}")
|
| 62 |
+
print(f"Ready for inference!")
|
| 63 |
+
|
| 64 |
+
def embed(self, text: str) -> torch.Tensor:
|
| 65 |
+
"""
|
| 66 |
+
Convert text to embeddings
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
text: Input text
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
Embedding tensor
|
| 73 |
+
"""
|
| 74 |
+
# Handle long text by chunking
|
| 75 |
+
if len(text.encode('utf-8')) > self.max_chunk_size:
|
| 76 |
+
chunks = self._split_text_safely(text)
|
| 77 |
+
embeddings = []
|
| 78 |
+
|
| 79 |
+
for chunk in chunks:
|
| 80 |
+
emb = self._embed_single(chunk)
|
| 81 |
+
embeddings.append(emb)
|
| 82 |
+
|
| 83 |
+
# Concatenate embeddings
|
| 84 |
+
return torch.cat(embeddings, dim=1)
|
| 85 |
+
else:
|
| 86 |
+
return self._embed_single(text)
|
| 87 |
+
|
| 88 |
+
def _embed_single(self, text: str) -> torch.Tensor:
|
| 89 |
+
"""Embed single chunk"""
|
| 90 |
+
# Encode text
|
| 91 |
+
encoded = self.tokenizer.encode(text)
|
| 92 |
+
byte_ids = encoded['input_ids']
|
| 93 |
+
input_ids = torch.tensor([byte_ids], device=self.device)
|
| 94 |
+
attention_mask = torch.tensor([encoded['attention_mask']], device=self.device)
|
| 95 |
+
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
# Get embeddings
|
| 98 |
+
encoder_outputs = self.model.encoder(input_ids, attention_mask)
|
| 99 |
+
embeddings = encoder_outputs['last_hidden_state']
|
| 100 |
+
|
| 101 |
+
return embeddings
|
| 102 |
+
|
| 103 |
+
def restore(self, text: str) -> Tuple[str, float]:
|
| 104 |
+
"""
|
| 105 |
+
Test restoration capability
|
| 106 |
+
|
| 107 |
+
Args:
|
| 108 |
+
text: Input text
|
| 109 |
+
|
| 110 |
+
Returns:
|
| 111 |
+
Tuple of (restored_text, accuracy)
|
| 112 |
+
"""
|
| 113 |
+
# Handle long text
|
| 114 |
+
if len(text.encode('utf-8')) > self.max_chunk_size:
|
| 115 |
+
chunks = self._split_text_safely(text)
|
| 116 |
+
restored_chunks = []
|
| 117 |
+
accuracies = []
|
| 118 |
+
|
| 119 |
+
for chunk in chunks:
|
| 120 |
+
restored, acc = self._restore_single(chunk)
|
| 121 |
+
restored_chunks.append(restored)
|
| 122 |
+
accuracies.append(acc)
|
| 123 |
+
|
| 124 |
+
return ''.join(restored_chunks), sum(accuracies) / len(accuracies)
|
| 125 |
+
else:
|
| 126 |
+
return self._restore_single(text)
|
| 127 |
+
|
| 128 |
+
def _restore_single(self, text: str) -> Tuple[str, float]:
|
| 129 |
+
"""Restore single chunk"""
|
| 130 |
+
# Encode text
|
| 131 |
+
encoded = self.tokenizer.encode(text)
|
| 132 |
+
byte_ids = encoded['input_ids']
|
| 133 |
+
|
| 134 |
+
if len(byte_ids) <= 1:
|
| 135 |
+
return text, 1.0
|
| 136 |
+
|
| 137 |
+
input_ids = torch.tensor([byte_ids], device=self.device)
|
| 138 |
+
attention_mask = torch.tensor([encoded['attention_mask']], device=self.device)
|
| 139 |
+
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
# Teacher forcing for restoration test
|
| 142 |
+
decoder_input = input_ids[:, :-1]
|
| 143 |
+
labels = input_ids[:, 1:]
|
| 144 |
+
|
| 145 |
+
outputs = self.model(
|
| 146 |
+
input_ids=input_ids,
|
| 147 |
+
attention_mask=attention_mask,
|
| 148 |
+
decoder_input_ids=decoder_input,
|
| 149 |
+
labels=labels,
|
| 150 |
+
use_cross_attention=True
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Get predictions
|
| 154 |
+
predictions = torch.argmax(outputs['logits'], dim=-1)
|
| 155 |
+
accuracy = (predictions == labels).float().mean().item()
|
| 156 |
+
|
| 157 |
+
# Decode predictions
|
| 158 |
+
try:
|
| 159 |
+
# Remove special tokens and convert to bytes
|
| 160 |
+
pred_list = predictions[0].cpu().tolist()
|
| 161 |
+
# Add BOS at beginning for full sequence
|
| 162 |
+
full_sequence = [self.tokenizer.BOS] + pred_list
|
| 163 |
+
|
| 164 |
+
# Filter valid bytes
|
| 165 |
+
filtered = [b for b in full_sequence if 0 <= b < 256]
|
| 166 |
+
if filtered:
|
| 167 |
+
restored_bytes = bytes(filtered)
|
| 168 |
+
restored_text = restored_bytes.decode('utf-8', errors='ignore')
|
| 169 |
+
else:
|
| 170 |
+
restored_text = ""
|
| 171 |
+
except Exception as e:
|
| 172 |
+
print(f"Restoration error: {e}")
|
| 173 |
+
restored_text = ""
|
| 174 |
+
|
| 175 |
+
return restored_text, accuracy
|
| 176 |
+
|
| 177 |
+
def compress(self, text: str) -> Dict:
|
| 178 |
+
"""
|
| 179 |
+
Get compression statistics
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
text: Input text
|
| 183 |
+
|
| 184 |
+
Returns:
|
| 185 |
+
Dict with compression info
|
| 186 |
+
"""
|
| 187 |
+
text_bytes = text.encode('utf-8')
|
| 188 |
+
embeddings = self.embed(text)
|
| 189 |
+
|
| 190 |
+
original_size = len(text_bytes)
|
| 191 |
+
compressed_size = embeddings.shape[1]
|
| 192 |
+
compression_ratio = original_size / compressed_size if compressed_size > 0 else 0
|
| 193 |
+
|
| 194 |
+
return {
|
| 195 |
+
'original_bytes': original_size,
|
| 196 |
+
'compressed_tokens': compressed_size,
|
| 197 |
+
'compression_ratio': compression_ratio,
|
| 198 |
+
'embedding_shape': list(embeddings.shape)
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
def _split_text_safely(self, text: str) -> List[str]:
|
| 202 |
+
"""Split text safely at UTF-8 boundaries"""
|
| 203 |
+
chunks = []
|
| 204 |
+
text_bytes = text.encode('utf-8')
|
| 205 |
+
|
| 206 |
+
start = 0
|
| 207 |
+
while start < len(text_bytes):
|
| 208 |
+
end = min(start + self.max_chunk_size, len(text_bytes))
|
| 209 |
+
|
| 210 |
+
# Find valid UTF-8 boundary
|
| 211 |
+
while end > start and end < len(text_bytes):
|
| 212 |
+
try:
|
| 213 |
+
chunk = text_bytes[start:end].decode('utf-8')
|
| 214 |
+
break
|
| 215 |
+
except UnicodeDecodeError:
|
| 216 |
+
end -= 1
|
| 217 |
+
|
| 218 |
+
if end > start:
|
| 219 |
+
chunk = text_bytes[start:end].decode('utf-8')
|
| 220 |
+
chunks.append(chunk)
|
| 221 |
+
start = end
|
| 222 |
+
else:
|
| 223 |
+
break
|
| 224 |
+
|
| 225 |
+
return chunks
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def test_model():
|
| 229 |
+
"""Test model functionality"""
|
| 230 |
+
print("="*70)
|
| 231 |
+
print("INTELLIGENT TOKENIZER v6.0 - FUNCTIONALITY TEST")
|
| 232 |
+
print("="*70)
|
| 233 |
+
|
| 234 |
+
# Initialize tokenizer
|
| 235 |
+
tokenizer = IntelligentTokenizer()
|
| 236 |
+
|
| 237 |
+
# Test samples
|
| 238 |
+
test_samples = [
|
| 239 |
+
("English", "Hello, world!"),
|
| 240 |
+
("Korean", "안녕하세요. 반갑습니다."),
|
| 241 |
+
("Chinese", "今天天气很好"),
|
| 242 |
+
("Japanese", "こんにちは"),
|
| 243 |
+
("Arabic", "مرحبا بك"),
|
| 244 |
+
("Russian", "Привет, как дела?"),
|
| 245 |
+
("Emoji", "Hello 👋 World 🌍!"),
|
| 246 |
+
]
|
| 247 |
+
|
| 248 |
+
print("\n" + "="*70)
|
| 249 |
+
print("EMBEDDING & RESTORATION TESTS")
|
| 250 |
+
print("="*70)
|
| 251 |
+
|
| 252 |
+
total_accuracy = 0
|
| 253 |
+
successful = 0
|
| 254 |
+
|
| 255 |
+
for lang, text in test_samples:
|
| 256 |
+
print(f"\n[{lang}]")
|
| 257 |
+
print(f"Original: {text}")
|
| 258 |
+
|
| 259 |
+
# Test embedding
|
| 260 |
+
embeddings = tokenizer.embed(text)
|
| 261 |
+
print(f"Embedding: {embeddings.shape}")
|
| 262 |
+
|
| 263 |
+
# Test compression
|
| 264 |
+
compression = tokenizer.compress(text)
|
| 265 |
+
print(f"Compression: {compression['original_bytes']} bytes → {compression['compressed_tokens']} tokens")
|
| 266 |
+
print(f"Ratio: {compression['compression_ratio']:.2f}x")
|
| 267 |
+
|
| 268 |
+
# Test restoration
|
| 269 |
+
restored, accuracy = tokenizer.restore(text)
|
| 270 |
+
print(f"Restored: {restored}")
|
| 271 |
+
print(f"Accuracy: {accuracy:.1%}")
|
| 272 |
+
|
| 273 |
+
if accuracy > 0.7:
|
| 274 |
+
successful += 1
|
| 275 |
+
total_accuracy += accuracy
|
| 276 |
+
|
| 277 |
+
# Summary
|
| 278 |
+
print("\n" + "="*70)
|
| 279 |
+
print("TEST SUMMARY")
|
| 280 |
+
print("="*70)
|
| 281 |
+
print(f"Tests passed: {successful}/{len(test_samples)}")
|
| 282 |
+
print(f"Average accuracy: {total_accuracy/len(test_samples):.1%}")
|
| 283 |
+
|
| 284 |
+
if successful == len(test_samples):
|
| 285 |
+
print("\n✅ ALL TESTS PASSED!")
|
| 286 |
+
return True
|
| 287 |
+
elif successful >= len(test_samples) * 0.7:
|
| 288 |
+
print("\n⚠️ PARTIAL SUCCESS (70%+ tests passed)")
|
| 289 |
+
return True
|
| 290 |
+
else:
|
| 291 |
+
print("\n❌ TESTS FAILED")
|
| 292 |
+
return False
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
if __name__ == "__main__":
|
| 296 |
+
success = test_model()
|
| 297 |
+
sys.exit(0 if success else 1)
|