Update: B2NL is Tokenizer-Free Revolution
Browse files
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title: B2NL
|
| 3 |
emoji: ๐
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: apache-2.0
|
|
@@ -12,84 +12,86 @@ models:
|
|
| 12 |
- ggunio/B2NL-v6.1.1
|
| 13 |
---
|
| 14 |
|
| 15 |
-
# ๐ B2NL
|
| 16 |
|
| 17 |
-
##
|
| 18 |
-
|
| 19 |
-
This demo shows how B2NL **reduces the number of embeddings** sent to LLMs by intelligently grouping bytes.
|
| 20 |
|
| 21 |
---
|
| 22 |
|
| 23 |
-
## ๐ฏ What You're
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
### Example:
|
| 31 |
-
```
|
| 32 |
-
Input: "์๋
ํ์ธ์. ์ค๋ ๋ ์จ๊ฐ ์ข๋ค์."
|
| 33 |
-
Traditional: 44 bytes โ 44 embeddings
|
| 34 |
-
B2NL Current: 44 bytes โ 18 embeddings (2.4x reduction!)
|
| 35 |
-
B2NL Target: 44 bytes โ 4 embeddings (11x reduction!)
|
| 36 |
-
```
|
| 37 |
|
| 38 |
---
|
| 39 |
|
| 40 |
-
## ๐
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
---
|
| 52 |
|
| 53 |
-
##
|
| 54 |
|
| 55 |
-
|
| 56 |
-
-
|
| 57 |
-
-
|
| 58 |
-
-
|
| 59 |
-
- Longer effective context
|
| 60 |
|
| 61 |
-
|
| 62 |
-
-
|
| 63 |
-
-
|
| 64 |
-
- Lower costs
|
| 65 |
|
| 66 |
---
|
| 67 |
|
| 68 |
-
##
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
| 74 |
|
| 75 |
---
|
| 76 |
|
| 77 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
-
|
| 81 |
-
-
|
| 82 |
-
-
|
|
|
|
| 83 |
|
| 84 |
---
|
| 85 |
|
| 86 |
-
## ๐ฎ
|
| 87 |
|
| 88 |
-
1.
|
| 89 |
-
2.
|
| 90 |
-
3.
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
---
|
| 94 |
|
| 95 |
-
**Remember: The "tokens" shown are
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: B2NL Tokenizer-Free Demo
|
| 3 |
emoji: ๐
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: apache-2.0
|
|
|
|
| 12 |
- ggunio/B2NL-v6.1.1
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# ๐ B2NL: The Tokenizer-Free Revolution
|
| 16 |
|
| 17 |
+
## No Vocabulary Files. No Rules. Just Intelligence.
|
|
|
|
|
|
|
| 18 |
|
| 19 |
---
|
| 20 |
|
| 21 |
+
## ๐ฏ What You're Testing
|
| 22 |
|
| 23 |
+
**B2NL replaces traditional tokenizers entirely:**
|
| 24 |
+
- Input text โ Bytes โ Intelligent grouping โ Tokens
|
| 25 |
+
- No vocabulary needed (vs GPT's 100K+ vocabulary)
|
| 26 |
+
- Works with ANY language/emoji/symbol
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
---
|
| 29 |
|
| 30 |
+
## ๐ Live Compression Stats (Phase 2, Epoch 51)
|
| 31 |
|
| 32 |
+
When you type Korean text:
|
| 33 |
+
```
|
| 34 |
+
"์๋
ํ์ธ์" (4 characters)
|
| 35 |
+
โ Traditional: 12 bytes โ 12 tokens
|
| 36 |
+
โ GPT-4: 12 bytes โ ~5 tokens
|
| 37 |
+
โ B2NL Now: 12 bytes โ 5 tokens (2.4x compression)
|
| 38 |
+
โ B2NL Goal: 12 bytes โ 1 token (12x compression!)
|
| 39 |
+
```
|
| 40 |
|
| 41 |
---
|
| 42 |
|
| 43 |
+
## ๐ฌ Try These Examples
|
| 44 |
|
| 45 |
+
### Korean (Watch the compression!):
|
| 46 |
+
- Short: "์๋
ํ์ธ์"
|
| 47 |
+
- Medium: "์ค๋ ๋ ์จ๊ฐ ์ข๋ค์"
|
| 48 |
+
- Long: "์ธ๊ณต์ง๋ฅ์ด ์ธ์์ ๋ฐ๊พธ๊ณ ์์ต๋๋ค"
|
|
|
|
| 49 |
|
| 50 |
+
### See the "Statistics" box:
|
| 51 |
+
- **Tokens**: Number of embeddings generated
|
| 52 |
+
- **Compression**: How much we compressed (goal: 20:1 for Korean!)
|
|
|
|
| 53 |
|
| 54 |
---
|
| 55 |
|
| 56 |
+
## ๐ Current Performance
|
| 57 |
|
| 58 |
+
| What you type | Traditional | B2NL Now | B2NL Target |
|
| 59 |
+
|---------------|-------------|----------|-------------|
|
| 60 |
+
| Korean word | 3-5 tokens | 2 tokens | 0.3 tokens |
|
| 61 |
+
| Chinese char | 1-3 tokens | 1 token | 0.2 tokens |
|
| 62 |
+
| English word | 1-2 tokens | 1 token | 0.5 tokens |
|
| 63 |
|
| 64 |
---
|
| 65 |
|
| 66 |
+
## ๐ฅ Why This Changes Everything
|
| 67 |
+
|
| 68 |
+
**For LLM Users:**
|
| 69 |
+
- Korean/Chinese/Japanese: 3-20x longer context
|
| 70 |
+
- All languages: Faster inference
|
| 71 |
+
- No tokenizer downloads
|
| 72 |
+
- Perfect reconstruction
|
| 73 |
|
| 74 |
+
**For Developers:**
|
| 75 |
+
- No vocabulary management
|
| 76 |
+
- No OOV problems
|
| 77 |
+
- Universal API
|
| 78 |
+
- Tiny model (301M params)
|
| 79 |
|
| 80 |
---
|
| 81 |
|
| 82 |
+
## ๐ฎ How to Interpret Results
|
| 83 |
|
| 84 |
+
1. **Reconstruction Accuracy**: Should be 95-100%
|
| 85 |
+
2. **Token Count**: Lower is better!
|
| 86 |
+
3. **Compression Ratio**: Higher is better!
|
| 87 |
+
|
| 88 |
+
Current Status:
|
| 89 |
+
- โ
Phase 1: 97.71% reconstruction (DONE)
|
| 90 |
+
- ๐ Phase 2: Learning compression (IN PROGRESS)
|
| 91 |
+
- โณ Phase 3: 204 languages (PLANNED)
|
| 92 |
|
| 93 |
---
|
| 94 |
|
| 95 |
+
**Remember: This is replacing tokenizers entirely. The "tokens" shown are intelligent byte groups, not vocabulary lookups!**
|
| 96 |
+
|
| 97 |
+
๐ **The future is tokenizer-free!**
|