Update Space README with Phase 2 status (Sept 21, 2025)
Browse files
README.md
CHANGED
|
@@ -1,36 +1,146 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: π
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
|
|
|
| 10 |
models:
|
| 11 |
- ggunio/B2NL-v6.1.1
|
| 12 |
-
license: apache-2.0
|
| 13 |
---
|
| 14 |
|
| 15 |
-
# B2NL v6.1.1: Byte-to-Natural-Language Tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
- **
|
| 23 |
-
- **
|
| 24 |
-
- **
|
| 25 |
-
- **301.7M Parameters**: Efficient size
|
| 26 |
-
- **Pure Learning**: No linguistic rules
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
- [Model](https://huggingface.co/ggunio/B2NL-v6.1.1)
|
| 33 |
-
- [GitHub](https://github.com/Woojiggun/intelligent-tokenizer)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
We need GPU resources to train on 204 languages. If you can help, please reach out!
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Intelligent Tokenizer V6 Demo
|
| 3 |
emoji: π
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
+
license: apache-2.0
|
| 11 |
models:
|
| 12 |
- ggunio/B2NL-v6.1.1
|
|
|
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# π B2NL v6.1.1: Byte-to-Natural-Language Tokenizer Demo
|
| 16 |
+
|
| 17 |
+
## π’ Status Update (2025-09-21)
|
| 18 |
+
|
| 19 |
+
### β
Phase 1: COMPLETE - 97.71% Reconstruction Achieved!
|
| 20 |
+
### π Phase 2: IN PROGRESS - Dynamic Compression Training
|
| 21 |
+
### π
Next Update: September 28, 2025 (Phase 2 Results)
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## π― Current Model Status
|
| 26 |
+
|
| 27 |
+
This demo shows **B2NL (ByToNL) v6.1.1**, a revolutionary byte-level tokenizer that achieved:
|
| 28 |
+
- **97.71% overall reconstruction rate**
|
| 29 |
+
- **100% byte-exact reconstruction** for all 6 test languages
|
| 30 |
+
- **No vocabulary files** - pure byte-level learning
|
| 31 |
+
|
| 32 |
+
### β οΈ Important Notes:
|
| 33 |
+
1. **Current Scope**: 6 languages (NOT 204 yet)
|
| 34 |
+
2. **Phase 2 Training**: Dynamic compression (1-50:1) in progress
|
| 35 |
+
3. **204 Languages**: Will begin AFTER successful validation
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## π Phase 1 Results (COMPLETE)
|
| 40 |
+
|
| 41 |
+
| Language | Byte-Exact | Character-Level | Edit Similarity | Status |
|
| 42 |
+
|----------|------------|-----------------|-----------------|--------|
|
| 43 |
+
| English | 100.00% | 100.00% | 98.88% | β
Perfect |
|
| 44 |
+
| Korean | 100.00% | 100.00% | 97.30% | β
Perfect |
|
| 45 |
+
| Japanese | 100.00% | 100.00% | 96.55% | β
Perfect |
|
| 46 |
+
| Chinese | 100.00% | 100.00% | 96.30% | β
Perfect |
|
| 47 |
+
| Arabic | 100.00% | 100.00% | 98.36% | β
Perfect |
|
| 48 |
+
| Spanish | 100.00% | 100.00% | 98.88% | β
Perfect |
|
| 49 |
+
|
| 50 |
+
---
|
| 51 |
+
|
| 52 |
+
## π Phase 2: Compression Training (IN PROGRESS)
|
| 53 |
+
|
| 54 |
+
Currently training with dynamic compression ratios:
|
| 55 |
+
- **High accuracy (>95%)**: Apply 30-50:1 compression
|
| 56 |
+
- **Medium accuracy (90-95%)**: Apply 10-30:1 compression
|
| 57 |
+
- **Low accuracy (<90%)**: Apply 1-10:1 compression
|
| 58 |
+
|
| 59 |
+
**Target**: 3:1 average compression while maintaining >95% reconstruction
|
| 60 |
+
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
## π How to Use This Demo
|
| 64 |
+
|
| 65 |
+
1. **Enter any text** in the input box
|
| 66 |
+
2. **Choose generation mode**:
|
| 67 |
+
- Teacher Forcing: Better quality (uses ground truth)
|
| 68 |
+
- Autoregressive: Realistic inference
|
| 69 |
+
3. **Click "Tokenize & Reconstruct"**
|
| 70 |
+
4. See the reconstruction quality and compression ratio!
|
| 71 |
+
|
| 72 |
+
---
|
| 73 |
+
|
| 74 |
+
## π― Key Features
|
| 75 |
+
|
| 76 |
+
### Zero Vocabulary
|
| 77 |
+
- No vocabulary files needed
|
| 78 |
+
- Works with ANY text (any language, emoji, code)
|
| 79 |
+
- Direct byte-level processing
|
| 80 |
+
|
| 81 |
+
### Universal Coverage
|
| 82 |
+
- Tested on 6 diverse languages
|
| 83 |
+
- Plans for 204 languages (pending validation)
|
| 84 |
+
- Handles mixed languages seamlessly
|
| 85 |
+
|
| 86 |
+
### Efficient Architecture
|
| 87 |
+
- 301.7M parameters (lightweight)
|
| 88 |
+
- 5-layer encoder + 8-layer decoder
|
| 89 |
+
- Fast inference on CPU/GPU
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
|
| 93 |
+
## π
Timeline
|
| 94 |
+
|
| 95 |
+
### This Week (Sept 21-28, 2025)
|
| 96 |
+
- Phase 2 compression training
|
| 97 |
+
- Dynamic ratio testing
|
| 98 |
+
- Performance monitoring
|
| 99 |
+
|
| 100 |
+
### Next Week (Sept 28 - Oct 5, 2025)
|
| 101 |
+
- **Phase 2 Results Release**
|
| 102 |
+
- Compression achievements
|
| 103 |
+
- Decision on 204-language expansion
|
| 104 |
+
|
| 105 |
+
### Future (With GPU Support)
|
| 106 |
+
- 204-language training
|
| 107 |
+
- 2 weeks on A100 needed
|
| 108 |
+
- Full FLORES-200 dataset
|
| 109 |
+
|
| 110 |
+
---
|
| 111 |
+
|
| 112 |
+
## π‘ Try These Examples
|
| 113 |
+
|
| 114 |
+
The demo includes examples in:
|
| 115 |
+
- π¬π§ English
|
| 116 |
+
- π°π· Korean
|
| 117 |
+
- π―π΅ Japanese
|
| 118 |
+
- π¨π³ Chinese
|
| 119 |
+
- πΈπ¦ Arabic
|
| 120 |
+
- πͺπΈ Spanish
|
| 121 |
+
- π«π· French
|
| 122 |
+
- π·πΊ Russian
|
| 123 |
+
- π Even emojis!
|
| 124 |
|
| 125 |
+
---
|
| 126 |
|
| 127 |
+
## π Technical Details
|
| 128 |
|
| 129 |
+
- **Parameters**: 301,739,670 (301.7M)
|
| 130 |
+
- **Encoder**: 5 layers (768β896β1024β1152β1280)
|
| 131 |
+
- **Decoder**: 8 layers (1280d)
|
| 132 |
+
- **Vocab Size**: 260 (256 bytes + 4 special tokens)
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
---
|
| 135 |
+
|
| 136 |
+
## π€ Support & Links
|
| 137 |
+
|
| 138 |
+
- **Model**: [ggunio/B2NL-v6.1.1](https://huggingface.co/ggunio/B2NL-v6.1.1)
|
| 139 |
+
- **GitHub**: [Repository](https://github.com/Woojiggun/intelligent-tokenizer)
|
| 140 |
+
- **Paper**: Coming soon after Phase 3
|
| 141 |
+
|
| 142 |
+
---
|
| 143 |
|
| 144 |
+
**Note: This is a research project. Current model is 6 languages only. 204-language expansion pending validation and GPU resources.**
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
π Watch this space for Phase 2 results next week!
|
|
|