Fix import error by adding core module files
Browse files- app.py +1 -3
- core/byte_tokenizer_v6.py +298 -0
- core/unified_model.py +233 -80
app.py
CHANGED
|
@@ -13,9 +13,7 @@ import time
|
|
| 13 |
from typing import List, Tuple, Dict, Generator
|
| 14 |
# Removed matplotlib imports - using text display instead
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
parent_dir = Path(__file__).parent.parent.parent
|
| 18 |
-
sys.path.insert(0, str(parent_dir / 'intelligent-tokenizer_v6.1.2'))
|
| 19 |
from core.unified_model import IntelligentTokenizerModelV61
|
| 20 |
from core.byte_tokenizer_v6 import ByteTokenizerV6
|
| 21 |
|
|
|
|
| 13 |
from typing import List, Tuple, Dict, Generator
|
| 14 |
# Removed matplotlib imports - using text display instead
|
| 15 |
|
| 16 |
+
# Import from local core directory
|
|
|
|
|
|
|
| 17 |
from core.unified_model import IntelligentTokenizerModelV61
|
| 18 |
from core.byte_tokenizer_v6 import ByteTokenizerV6
|
| 19 |
|
core/byte_tokenizer_v6.py
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Byte-Level Tokenizer V6.1.2 - Compression-First Learning
|
| 3 |
+
No vocabulary, no language rules - just bytes
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from typing import List, Dict, Union, Optional
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ByteTokenizerV6:
|
| 12 |
+
"""
|
| 13 |
+
Pure byte-level tokenizer
|
| 14 |
+
- No vocabulary needed (bytes are 0-255)
|
| 15 |
+
- No language-specific rules
|
| 16 |
+
- Model learns all patterns from data
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, max_seq_len: int = 64):
|
| 20 |
+
"""Initialize byte tokenizer"""
|
| 21 |
+
|
| 22 |
+
self.max_seq_len = max_seq_len
|
| 23 |
+
|
| 24 |
+
# Special tokens (beyond byte range 0-255)
|
| 25 |
+
self.PAD = 256
|
| 26 |
+
self.BOS = 257
|
| 27 |
+
self.EOS = 258
|
| 28 |
+
self.MASK = 259
|
| 29 |
+
|
| 30 |
+
# Total vocabulary size = 256 bytes + 4 special tokens
|
| 31 |
+
self.vocab_size = 260
|
| 32 |
+
|
| 33 |
+
print(f"Byte tokenizer initialized (vocab_size={self.vocab_size})")
|
| 34 |
+
|
| 35 |
+
def encode(self, text: str, add_special_tokens: bool = True) -> Dict:
|
| 36 |
+
"""
|
| 37 |
+
Encode text to byte IDs
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
text: Input text
|
| 41 |
+
add_special_tokens: Whether to add BOS/EOS
|
| 42 |
+
|
| 43 |
+
Returns:
|
| 44 |
+
dict with 'input_ids', 'attention_mask', 'length'
|
| 45 |
+
"""
|
| 46 |
+
# Convert text to UTF-8 bytes (pure bytes, no rules)
|
| 47 |
+
byte_sequence = list(text.encode('utf-8'))
|
| 48 |
+
|
| 49 |
+
# Truncate if necessary
|
| 50 |
+
max_len = self.max_seq_len - 2 if add_special_tokens else self.max_seq_len
|
| 51 |
+
if len(byte_sequence) > max_len:
|
| 52 |
+
byte_sequence = byte_sequence[:max_len]
|
| 53 |
+
|
| 54 |
+
# Add special tokens
|
| 55 |
+
if add_special_tokens:
|
| 56 |
+
input_ids = [self.BOS] + byte_sequence + [self.EOS]
|
| 57 |
+
else:
|
| 58 |
+
input_ids = byte_sequence
|
| 59 |
+
|
| 60 |
+
# Create attention mask (1 for real tokens, 0 for padding)
|
| 61 |
+
attention_mask = [1] * len(input_ids)
|
| 62 |
+
|
| 63 |
+
return {
|
| 64 |
+
'input_ids': input_ids,
|
| 65 |
+
'attention_mask': attention_mask,
|
| 66 |
+
'length': len(input_ids)
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
def encode_batch(self, texts: List[str], add_special_tokens: bool = True) -> Dict:
|
| 70 |
+
"""
|
| 71 |
+
Encode multiple texts with padding
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
texts: List of input texts
|
| 75 |
+
add_special_tokens: Whether to add special tokens
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
Batched tensors with padding
|
| 79 |
+
"""
|
| 80 |
+
encoded_texts = []
|
| 81 |
+
max_length = 0
|
| 82 |
+
|
| 83 |
+
# Encode each text
|
| 84 |
+
for text in texts:
|
| 85 |
+
encoded = self.encode(text, add_special_tokens)
|
| 86 |
+
encoded_texts.append(encoded)
|
| 87 |
+
max_length = max(max_length, encoded['length'])
|
| 88 |
+
|
| 89 |
+
# Limit to max sequence length
|
| 90 |
+
max_length = min(max_length, self.max_seq_len)
|
| 91 |
+
|
| 92 |
+
# Initialize batch tensors
|
| 93 |
+
batch_size = len(texts)
|
| 94 |
+
input_ids = np.full((batch_size, max_length), self.PAD, dtype=np.int64)
|
| 95 |
+
attention_mask = np.zeros((batch_size, max_length), dtype=np.float32)
|
| 96 |
+
|
| 97 |
+
# Fill batch tensors
|
| 98 |
+
for i, encoded in enumerate(encoded_texts):
|
| 99 |
+
seq_len = min(encoded['length'], max_length)
|
| 100 |
+
input_ids[i, :seq_len] = encoded['input_ids'][:seq_len]
|
| 101 |
+
attention_mask[i, :seq_len] = 1.0
|
| 102 |
+
|
| 103 |
+
return {
|
| 104 |
+
'input_ids': torch.tensor(input_ids, dtype=torch.long),
|
| 105 |
+
'attention_mask': torch.tensor(attention_mask, dtype=torch.float32),
|
| 106 |
+
'lengths': torch.tensor([e['length'] for e in encoded_texts], dtype=torch.long)
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
def decode(self, input_ids: Union[List[int], torch.Tensor, np.ndarray],
|
| 110 |
+
skip_special_tokens: bool = True) -> str:
|
| 111 |
+
"""
|
| 112 |
+
Decode byte IDs back to text
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
input_ids: Byte ID sequence
|
| 116 |
+
skip_special_tokens: Whether to skip special tokens
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
Decoded text string
|
| 120 |
+
"""
|
| 121 |
+
# Convert to list if needed
|
| 122 |
+
if isinstance(input_ids, torch.Tensor):
|
| 123 |
+
input_ids = input_ids.cpu().numpy().tolist()
|
| 124 |
+
elif isinstance(input_ids, np.ndarray):
|
| 125 |
+
input_ids = input_ids.tolist()
|
| 126 |
+
|
| 127 |
+
# Filter special tokens if requested
|
| 128 |
+
if skip_special_tokens:
|
| 129 |
+
# Only keep actual bytes (0-255)
|
| 130 |
+
input_ids = [b for b in input_ids if 0 <= b <= 255]
|
| 131 |
+
else:
|
| 132 |
+
# Replace special tokens with readable markers
|
| 133 |
+
processed = []
|
| 134 |
+
for b in input_ids:
|
| 135 |
+
if b == self.PAD:
|
| 136 |
+
continue # Skip padding
|
| 137 |
+
elif b == self.BOS:
|
| 138 |
+
processed.append(ord('[')) # Use [ for BOS
|
| 139 |
+
elif b == self.EOS:
|
| 140 |
+
processed.append(ord(']')) # Use ] for EOS
|
| 141 |
+
elif b == self.MASK:
|
| 142 |
+
processed.append(ord('*')) # Use * for MASK
|
| 143 |
+
elif 0 <= b <= 255:
|
| 144 |
+
processed.append(b)
|
| 145 |
+
input_ids = processed
|
| 146 |
+
|
| 147 |
+
# Convert bytes to text
|
| 148 |
+
if not input_ids:
|
| 149 |
+
return ""
|
| 150 |
+
|
| 151 |
+
try:
|
| 152 |
+
# μ ν¨ν UTF-8 μνμ€λ§ μΆμΆ
|
| 153 |
+
valid_bytes = []
|
| 154 |
+
i = 0
|
| 155 |
+
while i < len(input_ids):
|
| 156 |
+
b = input_ids[i]
|
| 157 |
+
if b < 128: # ASCII
|
| 158 |
+
valid_bytes.append(b)
|
| 159 |
+
i += 1
|
| 160 |
+
elif 192 <= b < 224: # 2-byte UTF-8
|
| 161 |
+
if i + 1 < len(input_ids) and 128 <= input_ids[i+1] < 192:
|
| 162 |
+
valid_bytes.extend(input_ids[i:i+2])
|
| 163 |
+
i += 2
|
| 164 |
+
else:
|
| 165 |
+
i += 1 # Skip invalid
|
| 166 |
+
elif 224 <= b < 240: # 3-byte UTF-8
|
| 167 |
+
if i + 2 < len(input_ids) and all(128 <= input_ids[j] < 192 for j in range(i+1, min(i+3, len(input_ids)))):
|
| 168 |
+
valid_bytes.extend(input_ids[i:i+3])
|
| 169 |
+
i += 3
|
| 170 |
+
else:
|
| 171 |
+
i += 1 # Skip invalid
|
| 172 |
+
elif 240 <= b < 248: # 4-byte UTF-8
|
| 173 |
+
if i + 3 < len(input_ids) and all(128 <= input_ids[j] < 192 for j in range(i+1, min(i+4, len(input_ids)))):
|
| 174 |
+
valid_bytes.extend(input_ids[i:i+4])
|
| 175 |
+
i += 4
|
| 176 |
+
else:
|
| 177 |
+
i += 1 # Skip invalid
|
| 178 |
+
else:
|
| 179 |
+
i += 1 # Skip invalid byte
|
| 180 |
+
|
| 181 |
+
# Decode valid bytes
|
| 182 |
+
if valid_bytes:
|
| 183 |
+
byte_array = bytes(valid_bytes)
|
| 184 |
+
text = byte_array.decode('utf-8', errors='replace') # replaceλ‘ λ³κ²½
|
| 185 |
+
return text
|
| 186 |
+
else:
|
| 187 |
+
return ""
|
| 188 |
+
except Exception as e:
|
| 189 |
+
# Fallback: convert ASCII only
|
| 190 |
+
return "".join([chr(b) if b < 128 else '' for b in input_ids])
|
| 191 |
+
|
| 192 |
+
def decode_batch(self, input_ids: torch.Tensor, skip_special_tokens: bool = True) -> List[str]:
|
| 193 |
+
"""
|
| 194 |
+
Decode a batch of byte sequences
|
| 195 |
+
|
| 196 |
+
Args:
|
| 197 |
+
input_ids: Batch of byte IDs (batch_size, seq_len)
|
| 198 |
+
skip_special_tokens: Whether to skip special tokens
|
| 199 |
+
|
| 200 |
+
Returns:
|
| 201 |
+
List of decoded texts
|
| 202 |
+
"""
|
| 203 |
+
texts = []
|
| 204 |
+
for i in range(input_ids.shape[0]):
|
| 205 |
+
text = self.decode(input_ids[i], skip_special_tokens)
|
| 206 |
+
texts.append(text)
|
| 207 |
+
return texts
|
| 208 |
+
|
| 209 |
+
def tokenize(self, text: str) -> List[int]:
|
| 210 |
+
"""
|
| 211 |
+
Simple tokenization to byte IDs (no special tokens)
|
| 212 |
+
|
| 213 |
+
Args:
|
| 214 |
+
text: Input text
|
| 215 |
+
|
| 216 |
+
Returns:
|
| 217 |
+
List of byte IDs
|
| 218 |
+
"""
|
| 219 |
+
return list(text.encode('utf-8'))
|
| 220 |
+
|
| 221 |
+
def detokenize(self, byte_ids: List[int]) -> str:
|
| 222 |
+
"""
|
| 223 |
+
Simple detokenization from byte IDs
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
byte_ids: List of byte IDs
|
| 227 |
+
|
| 228 |
+
Returns:
|
| 229 |
+
Decoded text
|
| 230 |
+
"""
|
| 231 |
+
try:
|
| 232 |
+
return bytes(byte_ids).decode('utf-8', errors='replace')
|
| 233 |
+
except:
|
| 234 |
+
return "".join([chr(b) if b < 128 else '?' for b in byte_ids])
|
| 235 |
+
|
| 236 |
+
def get_vocab_size(self) -> int:
|
| 237 |
+
"""Get vocabulary size"""
|
| 238 |
+
return self.vocab_size
|
| 239 |
+
|
| 240 |
+
def get_special_tokens(self) -> Dict[str, int]:
|
| 241 |
+
"""Get special token IDs"""
|
| 242 |
+
return {
|
| 243 |
+
'pad_id': self.PAD,
|
| 244 |
+
'bos_id': self.BOS,
|
| 245 |
+
'eos_id': self.EOS,
|
| 246 |
+
'mask_id': self.MASK
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
# Test code
|
| 251 |
+
if __name__ == "__main__":
|
| 252 |
+
# Initialize tokenizer
|
| 253 |
+
tokenizer = ByteTokenizerV6()
|
| 254 |
+
|
| 255 |
+
# Test texts in multiple languages
|
| 256 |
+
test_texts = [
|
| 257 |
+
"Hello World!",
|
| 258 |
+
"μλ
νμΈμ",
|
| 259 |
+
"δ½ ε₯½δΈη",
|
| 260 |
+
"γγγ«γ‘γ―",
|
| 261 |
+
"Ω
Ψ±ΨΨ¨Ψ§ Ψ¨Ψ§ΩΨΉΨ§ΩΩ
",
|
| 262 |
+
"ΠΠ΄ΡΠ°Π²ΡΡΠ²ΡΠΉ ΠΌΠΈΡ"
|
| 263 |
+
]
|
| 264 |
+
|
| 265 |
+
print("=" * 50)
|
| 266 |
+
print("Single Text Encoding/Decoding Test")
|
| 267 |
+
print("=" * 50)
|
| 268 |
+
|
| 269 |
+
for text in test_texts:
|
| 270 |
+
print(f"\nOriginal: {text}")
|
| 271 |
+
|
| 272 |
+
# Encode
|
| 273 |
+
encoded = tokenizer.encode(text)
|
| 274 |
+
print(f"Encoded length: {encoded['length']}")
|
| 275 |
+
print(f"First 10 bytes: {encoded['input_ids'][:10]}")
|
| 276 |
+
|
| 277 |
+
# Decode
|
| 278 |
+
decoded = tokenizer.decode(encoded['input_ids'])
|
| 279 |
+
print(f"Decoded: {decoded}")
|
| 280 |
+
print(f"Match: {decoded == text}")
|
| 281 |
+
|
| 282 |
+
print("\n" + "=" * 50)
|
| 283 |
+
print("Batch Encoding/Decoding Test")
|
| 284 |
+
print("=" * 50)
|
| 285 |
+
|
| 286 |
+
# Batch test
|
| 287 |
+
batch_result = tokenizer.encode_batch(test_texts)
|
| 288 |
+
print(f"Batch shape: {batch_result['input_ids'].shape}")
|
| 289 |
+
print(f"Attention mask shape: {batch_result['attention_mask'].shape}")
|
| 290 |
+
|
| 291 |
+
# Decode batch
|
| 292 |
+
decoded_texts = tokenizer.decode_batch(batch_result['input_ids'])
|
| 293 |
+
print("\nBatch decoding results:")
|
| 294 |
+
for orig, dec in zip(test_texts, decoded_texts):
|
| 295 |
+
print(f"Original: {orig}")
|
| 296 |
+
print(f"Decoded: {dec}")
|
| 297 |
+
print(f"Match: {orig == dec}")
|
| 298 |
+
print()
|
core/unified_model.py
CHANGED
|
@@ -1,6 +1,10 @@
|
|
| 1 |
"""
|
| 2 |
-
Unified Intelligent Tokenizer Model v6.
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import torch
|
|
@@ -48,7 +52,7 @@ class ByteTokenizer:
|
|
| 48 |
Pure byte-level tokenizer - no language rules
|
| 49 |
"""
|
| 50 |
|
| 51 |
-
def __init__(self, max_seq_len: int =
|
| 52 |
self.max_seq_len = max_seq_len
|
| 53 |
self.PAD = 256
|
| 54 |
self.BOS = 257
|
|
@@ -108,44 +112,73 @@ class ByteTokenizer:
|
|
| 108 |
return "".join([chr(b) if b < 128 else '?' for b in input_ids if b < 256])
|
| 109 |
|
| 110 |
|
| 111 |
-
class
|
| 112 |
"""
|
| 113 |
-
5-Layer Encoder with
|
| 114 |
-
Layer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
"""
|
| 116 |
-
|
| 117 |
def __init__(
|
| 118 |
self,
|
| 119 |
vocab_size: int = 260,
|
| 120 |
-
hidden_dims: List[int] = [
|
| 121 |
-
num_heads: int =
|
| 122 |
dropout: float = 0.1,
|
| 123 |
-
max_seq_len: int =
|
| 124 |
):
|
| 125 |
super().__init__()
|
| 126 |
|
| 127 |
-
# Byte
|
| 128 |
self.byte_embedding = nn.Embedding(vocab_size, hidden_dims[0])
|
| 129 |
-
|
| 130 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
self.pos_encoding = PositionalEncoding(hidden_dims[0], max_seq_len, dropout)
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
# 5 Transformer layers with dimension changes
|
| 134 |
self.layers = nn.ModuleList()
|
| 135 |
for i in range(len(hidden_dims)):
|
| 136 |
input_dim = hidden_dims[i-1] if i > 0 else hidden_dims[0]
|
| 137 |
output_dim = hidden_dims[i]
|
| 138 |
-
|
| 139 |
# Projection layer if dimension changes
|
| 140 |
if input_dim != output_dim:
|
| 141 |
proj = nn.Linear(input_dim, output_dim)
|
| 142 |
else:
|
| 143 |
proj = None
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
# Transformer encoder layer
|
| 146 |
layer = nn.TransformerEncoderLayer(
|
| 147 |
d_model=output_dim,
|
| 148 |
-
nhead=
|
| 149 |
dim_feedforward=output_dim * 4,
|
| 150 |
dropout=dropout,
|
| 151 |
activation='gelu',
|
|
@@ -164,13 +197,31 @@ class ByteEncoder(nn.Module):
|
|
| 164 |
def forward(
|
| 165 |
self,
|
| 166 |
input_ids: torch.Tensor,
|
| 167 |
-
attention_mask: Optional[torch.Tensor] = None
|
|
|
|
|
|
|
| 168 |
) -> Dict[str, torch.Tensor]:
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
x = self.byte_embedding(input_ids)
|
| 171 |
-
|
| 172 |
-
#
|
| 173 |
x = self.pos_encoding(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
# Prepare attention mask
|
| 176 |
if attention_mask is not None:
|
|
@@ -178,17 +229,46 @@ class ByteEncoder(nn.Module):
|
|
| 178 |
# It expects shape (batch_size, seq_len) and handles masking internally
|
| 179 |
pass
|
| 180 |
|
| 181 |
-
# Process through 5 layers
|
| 182 |
all_hidden_states = []
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
if layer_dict['projection'] is not None:
|
| 186 |
x = layer_dict['projection'](x)
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
# Transformer layer - properly handle mask
|
| 189 |
if attention_mask is not None:
|
| 190 |
-
# TransformerEncoderLayer expects key_padding_mask (batch, seq)
|
| 191 |
-
# where True means "ignore this position"
|
| 192 |
key_padding_mask = (attention_mask == 0)
|
| 193 |
x = layer_dict['transformer'](x, src_key_padding_mask=key_padding_mask)
|
| 194 |
else:
|
|
@@ -207,7 +287,13 @@ class ByteEncoder(nn.Module):
|
|
| 207 |
return {
|
| 208 |
'last_hidden_state': x,
|
| 209 |
'pooled_output': pooled,
|
| 210 |
-
'all_hidden_states': all_hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
}
|
| 212 |
|
| 213 |
|
|
@@ -217,15 +303,16 @@ class CrossAttention(nn.Module):
|
|
| 217 |
μΆλ‘ λ μ΄μ΄ μ°κ²°μ μν κ°νλ κ΄κ³ νμ΅
|
| 218 |
"""
|
| 219 |
|
| 220 |
-
def __init__(self, hidden_dim: int =
|
| 221 |
super().__init__()
|
| 222 |
-
|
|
|
|
| 223 |
self.cross_attn = nn.MultiheadAttention(
|
| 224 |
hidden_dim, num_heads, dropout, batch_first=True
|
| 225 |
)
|
| 226 |
|
| 227 |
-
# Enhanced relation classifier
|
| 228 |
-
# 0: identity, 1: similar, 2: different, 3: continuation
|
| 229 |
# 4: translation, 5: summary, 6: expansion, 7: contradiction
|
| 230 |
self.relation_head = nn.Sequential(
|
| 231 |
nn.Linear(hidden_dim * 2, hidden_dim),
|
|
@@ -236,6 +323,12 @@ class CrossAttention(nn.Module):
|
|
| 236 |
nn.Dropout(dropout),
|
| 237 |
nn.Linear(hidden_dim // 2, 8)
|
| 238 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
# Gating mechanism for adaptive fusion
|
| 241 |
self.gate = nn.Sequential(
|
|
@@ -274,13 +367,22 @@ class CrossAttention(nn.Module):
|
|
| 274 |
|
| 275 |
# Residual connection
|
| 276 |
attn_output = attn_output + query
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
# Adaptive gating for fusion
|
| 279 |
gate_input = torch.cat([query.mean(dim=1), key.mean(dim=1)], dim=-1)
|
| 280 |
gate_weights = self.gate(gate_input).unsqueeze(1)
|
| 281 |
-
|
| 282 |
-
# Gated fusion: μ μμ μΌλ‘
|
| 283 |
-
fused_output = gate_weights *
|
| 284 |
|
| 285 |
# Pool for relation classification
|
| 286 |
query_pooled = query.mean(dim=1) if query_mask is None else \
|
|
@@ -295,8 +397,10 @@ class CrossAttention(nn.Module):
|
|
| 295 |
return {
|
| 296 |
'cross_attention': fused_output, # Gated fusion output
|
| 297 |
'attention_weights': attn_weights,
|
|
|
|
| 298 |
'relation_logits': relation_logits,
|
| 299 |
-
'gate_weights': gate_weights.squeeze(1) # For analysis
|
|
|
|
| 300 |
}
|
| 301 |
|
| 302 |
|
|
@@ -304,15 +408,15 @@ class TransformerDecoder(nn.Module):
|
|
| 304 |
"""
|
| 305 |
Transformer Decoder with Positional Encoding
|
| 306 |
"""
|
| 307 |
-
|
| 308 |
def __init__(
|
| 309 |
self,
|
| 310 |
vocab_size: int = 260,
|
| 311 |
-
hidden_dim: int =
|
| 312 |
-
num_heads: int =
|
| 313 |
-
num_layers: int =
|
| 314 |
dropout: float = 0.1,
|
| 315 |
-
max_seq_len: int =
|
| 316 |
):
|
| 317 |
super().__init__()
|
| 318 |
|
|
@@ -408,73 +512,87 @@ class TransformerDecoder(nn.Module):
|
|
| 408 |
encoder_hidden: torch.Tensor,
|
| 409 |
encoder_mask: Optional[torch.Tensor] = None,
|
| 410 |
max_length: int = 128,
|
| 411 |
-
temperature: float = 1
|
| 412 |
-
top_k: int =
|
| 413 |
top_p: float = 0.95
|
| 414 |
) -> torch.Tensor:
|
| 415 |
batch_size = encoder_hidden.size(0)
|
| 416 |
device = encoder_hidden.device
|
| 417 |
-
|
| 418 |
# Start with BOS
|
| 419 |
decoder_input_ids = torch.full((batch_size, 1), 257, device=device)
|
| 420 |
-
|
|
|
|
|
|
|
|
|
|
| 421 |
for _ in range(max_length - 1):
|
| 422 |
# Forward pass
|
| 423 |
outputs = self.forward(encoder_hidden, decoder_input_ids, encoder_mask)
|
| 424 |
next_token_logits = outputs['logits'][:, -1, :] / temperature
|
| 425 |
-
|
| 426 |
# Top-k filtering
|
| 427 |
if top_k > 0:
|
| 428 |
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
| 429 |
next_token_logits[indices_to_remove] = float('-inf')
|
| 430 |
-
|
| 431 |
# Top-p filtering
|
| 432 |
if top_p < 1.0:
|
| 433 |
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
| 434 |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 435 |
-
|
| 436 |
sorted_indices_to_remove = cumulative_probs > top_p
|
| 437 |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 438 |
sorted_indices_to_remove[..., 0] = 0
|
| 439 |
-
|
| 440 |
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
|
| 441 |
next_token_logits[indices_to_remove] = float('-inf')
|
| 442 |
-
|
| 443 |
# Sample
|
| 444 |
probs = F.softmax(next_token_logits, dim=-1)
|
| 445 |
next_tokens = torch.multinomial(probs, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
decoder_input_ids = torch.cat([decoder_input_ids, next_tokens], dim=-1)
|
| 447 |
-
|
| 448 |
-
#
|
| 449 |
-
|
|
|
|
|
|
|
|
|
|
| 450 |
break
|
| 451 |
-
|
| 452 |
return decoder_input_ids
|
| 453 |
|
| 454 |
|
| 455 |
-
class
|
| 456 |
"""
|
| 457 |
-
Complete Intelligent Tokenizer Model v6.
|
| 458 |
-
|
|
|
|
|
|
|
|
|
|
| 459 |
"""
|
| 460 |
-
|
| 461 |
def __init__(
|
| 462 |
self,
|
| 463 |
vocab_size: int = 260,
|
| 464 |
-
encoder_dims: List[int] = [
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
|
|
|
| 468 |
dropout: float = 0.1,
|
| 469 |
-
max_seq_len: int =
|
| 470 |
):
|
| 471 |
super().__init__()
|
| 472 |
-
|
| 473 |
-
# Components
|
| 474 |
self.tokenizer = ByteTokenizer(max_seq_len)
|
| 475 |
-
self.encoder =
|
| 476 |
-
self.decoder = TransformerDecoder(vocab_size, decoder_hidden,
|
| 477 |
-
self.cross_attention = CrossAttention(encoder_dims[-1],
|
| 478 |
|
| 479 |
def forward(
|
| 480 |
self,
|
|
@@ -483,6 +601,8 @@ class IntelligentTokenizerModel(nn.Module):
|
|
| 483 |
attention_mask: Optional[torch.Tensor] = None,
|
| 484 |
decoder_input_ids: Optional[torch.Tensor] = None,
|
| 485 |
labels: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
| 486 |
use_cross_attention: bool = True
|
| 487 |
) -> Dict[str, torch.Tensor]:
|
| 488 |
# Tokenize if text input
|
|
@@ -495,13 +615,24 @@ class IntelligentTokenizerModel(nn.Module):
|
|
| 495 |
batch_size, seq_len = input_ids.shape
|
| 496 |
device = input_ids.device
|
| 497 |
|
| 498 |
-
# Encode
|
| 499 |
-
encoder_outputs = self.encoder(input_ids, attention_mask)
|
| 500 |
-
encoder_hidden = encoder_outputs['last_hidden_state'] # [batch, seq,
|
| 501 |
-
|
| 502 |
-
# μ°¨μ νμΈ
|
| 503 |
-
assert encoder_hidden.size(-1) ==
|
| 504 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
# Decode
|
| 506 |
decoder_outputs = self.decoder(
|
| 507 |
encoder_hidden,
|
|
@@ -542,25 +673,47 @@ class IntelligentTokenizerModel(nn.Module):
|
|
| 542 |
decoder_outputs['logits'].reshape(-1, decoder_outputs['logits'].size(-1)),
|
| 543 |
labels.reshape(-1)
|
| 544 |
)
|
| 545 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
# Relation loss (if cross-attention used)
|
| 547 |
relation_loss = 0
|
| 548 |
if relation_logits is not None:
|
| 549 |
# μκΈ° κ΄κ³λ identity (class 0)μ¬μΌ ν¨
|
| 550 |
batch_identity = torch.zeros(batch_size, dtype=torch.long, device=device)
|
| 551 |
relation_loss = F.cross_entropy(relation_logits, batch_identity) * 0.1
|
| 552 |
-
|
| 553 |
-
loss = recon_loss + relation_loss
|
| 554 |
|
| 555 |
return {
|
| 556 |
'loss': loss,
|
| 557 |
'logits': decoder_outputs['logits'],
|
|
|
|
| 558 |
'encoder_hidden_states': encoder_hidden,
|
| 559 |
'decoder_hidden_states': decoder_hidden,
|
| 560 |
'pooled_output': encoder_outputs['pooled_output'],
|
| 561 |
'cross_attention': cross_attn_outputs['cross_attention'] if cross_attn_outputs else None,
|
| 562 |
'relation_logits': relation_logits,
|
| 563 |
-
'all_encoder_states': encoder_outputs.get('all_hidden_states', None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
}
|
| 565 |
|
| 566 |
def encode_text(self, text: str) -> torch.Tensor:
|
|
|
|
| 1 |
"""
|
| 2 |
+
Unified Intelligent Tokenizer Model v6.1.2
|
| 3 |
+
Compression-First Learning with Adaptive Splitting
|
| 4 |
+
- 64 byte chunks for aggressive compression
|
| 5 |
+
- 50 epoch checkpoints with automatic splitting
|
| 6 |
+
- Group relation learning for reconstruction
|
| 7 |
+
- Boundary adjustment for semantic units
|
| 8 |
"""
|
| 9 |
|
| 10 |
import torch
|
|
|
|
| 52 |
Pure byte-level tokenizer - no language rules
|
| 53 |
"""
|
| 54 |
|
| 55 |
+
def __init__(self, max_seq_len: int = 64): # v6.1.2: 64 bytes for compression-first approach
|
| 56 |
self.max_seq_len = max_seq_len
|
| 57 |
self.PAD = 256
|
| 58 |
self.BOS = 257
|
|
|
|
| 112 |
return "".join([chr(b) if b < 128 else '?' for b in input_ids if b < 256])
|
| 113 |
|
| 114 |
|
| 115 |
+
class ByteEncoderV61(nn.Module):
|
| 116 |
"""
|
| 117 |
+
v6.1: 5-Layer Encoder with Layer-Specialized Architecture
|
| 118 |
+
Layer 0: 768d - Byte to character (with curriculum learning)
|
| 119 |
+
Layer 1: 896d - Language pattern discovery (no labels)
|
| 120 |
+
Layer 2: 1024d - Eojeol/Word formation (+ eojeol PE)
|
| 121 |
+
Layer 3: 1152d - Small phrase grouping (2-3 eojeols)
|
| 122 |
+
Layer 4: 1280d - Final refinement (+ context PE)
|
| 123 |
+
|
| 124 |
+
Target: μ΄μ (eojeol) to ꡬ(phrase) level compression (3:1 ratio)
|
| 125 |
"""
|
| 126 |
+
|
| 127 |
def __init__(
|
| 128 |
self,
|
| 129 |
vocab_size: int = 260,
|
| 130 |
+
hidden_dims: List[int] = [768, 896, 1024, 1152, 1280], # v6.1 dimensions
|
| 131 |
+
num_heads: List[int] = [12, 14, 16, 18, 20], # v6.1: Progressive heads per layer
|
| 132 |
dropout: float = 0.1,
|
| 133 |
+
max_seq_len: int = 64 # v6.1.2: 64 chunk for compression-first
|
| 134 |
):
|
| 135 |
super().__init__()
|
| 136 |
|
| 137 |
+
# Layer 0: Byte to Character with Curriculum Learning
|
| 138 |
self.byte_embedding = nn.Embedding(vocab_size, hidden_dims[0])
|
| 139 |
+
|
| 140 |
+
# v6.1: Multi-level boundary predictors for hierarchical segmentation
|
| 141 |
+
# Level 1: Character boundaries (UTF-8 multi-byte)
|
| 142 |
+
self.char_boundary_predictor = nn.Linear(hidden_dims[0], 3) # 0: continue, 1: start, 2: end
|
| 143 |
+
|
| 144 |
+
# Level 2: Eojeol boundaries (space + particle analysis)
|
| 145 |
+
self.eojeol_boundary_predictor = nn.Linear(hidden_dims[2], 4) # 0: inside, 1: space, 2: particle, 3: punct
|
| 146 |
+
|
| 147 |
+
# Level 3: Phrase boundaries (syntactic chunks)
|
| 148 |
+
self.phrase_boundary_predictor = nn.Linear(hidden_dims[3], 3) # 0: inside, 1: weak boundary, 2: strong boundary
|
| 149 |
+
|
| 150 |
+
# v6.1: Positional encoding ONLY for Layer 0
|
| 151 |
self.pos_encoding = PositionalEncoding(hidden_dims[0], max_seq_len, dropout)
|
| 152 |
+
|
| 153 |
+
# v6.1: Layer 1 - Language pattern discovery (no labels!)
|
| 154 |
+
self.pattern_discoverer = nn.Linear(hidden_dims[1], 256) # Discover patterns autonomously (from 896d)
|
| 155 |
+
self.lang_signal_generator = nn.Linear(hidden_dims[1], 128) # Generate language signals (from 896d)
|
| 156 |
+
|
| 157 |
+
# v6.1: Group-aware relative position encodings for Layer 2-4
|
| 158 |
+
self.group_pe_layer2 = nn.Embedding(max_seq_len, hidden_dims[2]) # For eojeol/word units
|
| 159 |
+
self.group_pe_layer3 = nn.Embedding(max_seq_len, hidden_dims[3]) # For small phrases (2-3 eojeols)
|
| 160 |
+
self.group_pe_layer4 = nn.Embedding(max_seq_len, hidden_dims[4]) # For context/discourse
|
| 161 |
+
|
| 162 |
# 5 Transformer layers with dimension changes
|
| 163 |
self.layers = nn.ModuleList()
|
| 164 |
for i in range(len(hidden_dims)):
|
| 165 |
input_dim = hidden_dims[i-1] if i > 0 else hidden_dims[0]
|
| 166 |
output_dim = hidden_dims[i]
|
| 167 |
+
|
| 168 |
# Projection layer if dimension changes
|
| 169 |
if input_dim != output_dim:
|
| 170 |
proj = nn.Linear(input_dim, output_dim)
|
| 171 |
else:
|
| 172 |
proj = None
|
| 173 |
+
|
| 174 |
+
# v6.1: Layer-specific head count for optimal dimension per head
|
| 175 |
+
# Target: 64-80 dim per head
|
| 176 |
+
layer_heads = num_heads[i] if isinstance(num_heads, list) else num_heads
|
| 177 |
+
|
| 178 |
# Transformer encoder layer
|
| 179 |
layer = nn.TransformerEncoderLayer(
|
| 180 |
d_model=output_dim,
|
| 181 |
+
nhead=layer_heads,
|
| 182 |
dim_feedforward=output_dim * 4,
|
| 183 |
dropout=dropout,
|
| 184 |
activation='gelu',
|
|
|
|
| 197 |
def forward(
|
| 198 |
self,
|
| 199 |
input_ids: torch.Tensor,
|
| 200 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 201 |
+
boundary_labels: Optional[torch.Tensor] = None,
|
| 202 |
+
epoch: int = 0
|
| 203 |
) -> Dict[str, torch.Tensor]:
|
| 204 |
+
"""
|
| 205 |
+
v6.1 Forward pass with curriculum learning
|
| 206 |
+
Args:
|
| 207 |
+
boundary_labels: UTF-8 boundary labels for curriculum learning (training only)
|
| 208 |
+
epoch: Current epoch for curriculum schedule
|
| 209 |
+
"""
|
| 210 |
+
batch_size, seq_len = input_ids.shape
|
| 211 |
+
|
| 212 |
+
# Layer 0: Byte embedding with curriculum learning
|
| 213 |
x = self.byte_embedding(input_ids)
|
| 214 |
+
|
| 215 |
+
# v6.1: Positional encoding ONLY at Layer 0
|
| 216 |
x = self.pos_encoding(x)
|
| 217 |
+
|
| 218 |
+
# v6.1: Predict character boundaries (Layer 0)
|
| 219 |
+
char_boundaries = self.char_boundary_predictor(x)
|
| 220 |
+
|
| 221 |
+
# v6.1: Curriculum learning for character boundaries
|
| 222 |
+
# Note: boundary_labels are eojeol boundaries (4 classes), not char boundaries (3 classes)
|
| 223 |
+
# So we don't mix them with char_boundaries - they serve different purposes
|
| 224 |
+
char_boundary_weights = F.softmax(char_boundaries, dim=-1)
|
| 225 |
|
| 226 |
# Prepare attention mask
|
| 227 |
if attention_mask is not None:
|
|
|
|
| 229 |
# It expects shape (batch_size, seq_len) and handles masking internally
|
| 230 |
pass
|
| 231 |
|
| 232 |
+
# v6.1: Process through 5 specialized layers
|
| 233 |
all_hidden_states = []
|
| 234 |
+
discovered_patterns = None
|
| 235 |
+
eojeol_boundaries = None
|
| 236 |
+
phrase_boundaries = None
|
| 237 |
+
|
| 238 |
+
for i, layer_dict in enumerate(self.layers):
|
| 239 |
+
# Project if needed (before layer-specific processing)
|
| 240 |
if layer_dict['projection'] is not None:
|
| 241 |
x = layer_dict['projection'](x)
|
| 242 |
+
|
| 243 |
+
# Layer 1: Add language signals (autonomous discovery)
|
| 244 |
+
if i == 1:
|
| 245 |
+
# Discover language patterns WITHOUT labels (x is now 896d)
|
| 246 |
+
discovered_patterns = self.pattern_discoverer(x)
|
| 247 |
+
lang_signals = self.lang_signal_generator(x)
|
| 248 |
+
|
| 249 |
+
# Layer 2: Predict eojeol boundaries and add position encoding
|
| 250 |
+
elif i == 2:
|
| 251 |
+
# Predict eojeol boundaries (spaces, particles, punctuation)
|
| 252 |
+
eojeol_boundaries = self.eojeol_boundary_predictor(x)
|
| 253 |
+
positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1)
|
| 254 |
+
group_pe = self.group_pe_layer2(positions)
|
| 255 |
+
x = x + group_pe * 0.1 # Mild addition to preserve main signal
|
| 256 |
+
|
| 257 |
+
# Layer 3: Predict phrase boundaries and add position encoding
|
| 258 |
+
elif i == 3:
|
| 259 |
+
# Predict phrase boundaries (weak/strong syntactic breaks)
|
| 260 |
+
phrase_boundaries = self.phrase_boundary_predictor(x)
|
| 261 |
+
positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1)
|
| 262 |
+
group_pe = self.group_pe_layer3(positions)
|
| 263 |
+
x = x + group_pe * 0.1
|
| 264 |
+
|
| 265 |
+
elif i == 4:
|
| 266 |
+
positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1)
|
| 267 |
+
group_pe = self.group_pe_layer4(positions)
|
| 268 |
+
x = x + group_pe * 0.1
|
| 269 |
+
|
| 270 |
# Transformer layer - properly handle mask
|
| 271 |
if attention_mask is not None:
|
|
|
|
|
|
|
| 272 |
key_padding_mask = (attention_mask == 0)
|
| 273 |
x = layer_dict['transformer'](x, src_key_padding_mask=key_padding_mask)
|
| 274 |
else:
|
|
|
|
| 287 |
return {
|
| 288 |
'last_hidden_state': x,
|
| 289 |
'pooled_output': pooled,
|
| 290 |
+
'all_hidden_states': all_hidden_states,
|
| 291 |
+
# v6.1 boundary predictions
|
| 292 |
+
'char_boundaries': char_boundaries,
|
| 293 |
+
'char_boundary_weights': char_boundary_weights,
|
| 294 |
+
'eojeol_boundaries': eojeol_boundaries,
|
| 295 |
+
'phrase_boundaries': phrase_boundaries,
|
| 296 |
+
'discovered_patterns': discovered_patterns
|
| 297 |
}
|
| 298 |
|
| 299 |
|
|
|
|
| 303 |
μΆλ‘ λ μ΄μ΄ μ°κ²°μ μν κ°νλ κ΄κ³ νμ΅
|
| 304 |
"""
|
| 305 |
|
| 306 |
+
def __init__(self, hidden_dim: int = 1280, num_heads: int = 20, dropout: float = 0.1):
|
| 307 |
super().__init__()
|
| 308 |
+
|
| 309 |
+
# v6.1: Adjusted for 1280d (64 per head with 20 heads)
|
| 310 |
self.cross_attn = nn.MultiheadAttention(
|
| 311 |
hidden_dim, num_heads, dropout, batch_first=True
|
| 312 |
)
|
| 313 |
|
| 314 |
+
# v6.1: Enhanced relation classifier with reconstruction focus
|
| 315 |
+
# 0: identity (μλ²½ν 볡μ), 1: similar, 2: different, 3: continuation
|
| 316 |
# 4: translation, 5: summary, 6: expansion, 7: contradiction
|
| 317 |
self.relation_head = nn.Sequential(
|
| 318 |
nn.Linear(hidden_dim * 2, hidden_dim),
|
|
|
|
| 323 |
nn.Dropout(dropout),
|
| 324 |
nn.Linear(hidden_dim // 2, 8)
|
| 325 |
)
|
| 326 |
+
|
| 327 |
+
# v6.1: Reconstruction-specific attention (볡μ μ μ© μ΄ν
μ
)
|
| 328 |
+
# Use 10 heads for reconstruction (128 per head)
|
| 329 |
+
self.reconstruction_attn = nn.MultiheadAttention(
|
| 330 |
+
hidden_dim, 10, dropout * 0.5, batch_first=True
|
| 331 |
+
)
|
| 332 |
|
| 333 |
# Gating mechanism for adaptive fusion
|
| 334 |
self.gate = nn.Sequential(
|
|
|
|
| 367 |
|
| 368 |
# Residual connection
|
| 369 |
attn_output = attn_output + query
|
| 370 |
+
|
| 371 |
+
# v6.1: Reconstruction-focused attention (볡μ μ΅μ ν)
|
| 372 |
+
recon_output, recon_weights = self.reconstruction_attn(
|
| 373 |
+
query_norm, query_norm, query_norm, # Self-attention for consistency
|
| 374 |
+
key_padding_mask=(query_mask == 0) if query_mask is not None else None
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
# Combine cross and reconstruction attention
|
| 378 |
+
combined_attn = attn_output * 0.7 + recon_output * 0.3
|
| 379 |
+
|
| 380 |
# Adaptive gating for fusion
|
| 381 |
gate_input = torch.cat([query.mean(dim=1), key.mean(dim=1)], dim=-1)
|
| 382 |
gate_weights = self.gate(gate_input).unsqueeze(1)
|
| 383 |
+
|
| 384 |
+
# Gated fusion: μ μμ μΌλ‘ attention κ²°κ³Ό μ‘°μ
|
| 385 |
+
fused_output = gate_weights * combined_attn + (1 - gate_weights) * query
|
| 386 |
|
| 387 |
# Pool for relation classification
|
| 388 |
query_pooled = query.mean(dim=1) if query_mask is None else \
|
|
|
|
| 397 |
return {
|
| 398 |
'cross_attention': fused_output, # Gated fusion output
|
| 399 |
'attention_weights': attn_weights,
|
| 400 |
+
'reconstruction_weights': recon_weights, # v6.1: 볡μ μ΄ν
μ
κ°μ€μΉ
|
| 401 |
'relation_logits': relation_logits,
|
| 402 |
+
'gate_weights': gate_weights.squeeze(1), # For analysis
|
| 403 |
+
'reconstruction_score': F.softmax(relation_logits, dim=-1)[:, 0] # identity νλ₯ (볡μλ)
|
| 404 |
}
|
| 405 |
|
| 406 |
|
|
|
|
| 408 |
"""
|
| 409 |
Transformer Decoder with Positional Encoding
|
| 410 |
"""
|
| 411 |
+
|
| 412 |
def __init__(
|
| 413 |
self,
|
| 414 |
vocab_size: int = 260,
|
| 415 |
+
hidden_dim: int = 1280, # v6.1: Match final encoder dim
|
| 416 |
+
num_heads: int = 16, # v6.1: 1280/16 = 80 per head
|
| 417 |
+
num_layers: int = 8, # v6.1 FINAL: 8 layers for better reconstruction
|
| 418 |
dropout: float = 0.1,
|
| 419 |
+
max_seq_len: int = 64 # v6.1.2: 64 chunk for compression-first
|
| 420 |
):
|
| 421 |
super().__init__()
|
| 422 |
|
|
|
|
| 512 |
encoder_hidden: torch.Tensor,
|
| 513 |
encoder_mask: Optional[torch.Tensor] = None,
|
| 514 |
max_length: int = 128,
|
| 515 |
+
temperature: float = 0.1, # ν ν¬λμ΄μ λ 보μμ μμ± (μ νν 볡μ)
|
| 516 |
+
top_k: int = 10, # μμ 10κ°λ§ κ³ λ €
|
| 517 |
top_p: float = 0.95
|
| 518 |
) -> torch.Tensor:
|
| 519 |
batch_size = encoder_hidden.size(0)
|
| 520 |
device = encoder_hidden.device
|
| 521 |
+
|
| 522 |
# Start with BOS
|
| 523 |
decoder_input_ids = torch.full((batch_size, 1), 257, device=device)
|
| 524 |
+
|
| 525 |
+
# Track which sequences are done
|
| 526 |
+
finished = torch.zeros(batch_size, dtype=torch.bool, device=device)
|
| 527 |
+
|
| 528 |
for _ in range(max_length - 1):
|
| 529 |
# Forward pass
|
| 530 |
outputs = self.forward(encoder_hidden, decoder_input_ids, encoder_mask)
|
| 531 |
next_token_logits = outputs['logits'][:, -1, :] / temperature
|
| 532 |
+
|
| 533 |
# Top-k filtering
|
| 534 |
if top_k > 0:
|
| 535 |
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
| 536 |
next_token_logits[indices_to_remove] = float('-inf')
|
| 537 |
+
|
| 538 |
# Top-p filtering
|
| 539 |
if top_p < 1.0:
|
| 540 |
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
| 541 |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 542 |
+
|
| 543 |
sorted_indices_to_remove = cumulative_probs > top_p
|
| 544 |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 545 |
sorted_indices_to_remove[..., 0] = 0
|
| 546 |
+
|
| 547 |
indices_to_remove = sorted_indices_to_remove.scatter(-1, sorted_indices, sorted_indices_to_remove)
|
| 548 |
next_token_logits[indices_to_remove] = float('-inf')
|
| 549 |
+
|
| 550 |
# Sample
|
| 551 |
probs = F.softmax(next_token_logits, dim=-1)
|
| 552 |
next_tokens = torch.multinomial(probs, 1)
|
| 553 |
+
|
| 554 |
+
# For finished sequences, force PAD token
|
| 555 |
+
next_tokens[finished] = 256 # PAD token
|
| 556 |
+
|
| 557 |
decoder_input_ids = torch.cat([decoder_input_ids, next_tokens], dim=-1)
|
| 558 |
+
|
| 559 |
+
# Update finished status
|
| 560 |
+
finished = finished | (next_tokens.squeeze(-1) == 258) # Mark as finished if EOS
|
| 561 |
+
|
| 562 |
+
# Stop when all sequences are done
|
| 563 |
+
if finished.all():
|
| 564 |
break
|
| 565 |
+
|
| 566 |
return decoder_input_ids
|
| 567 |
|
| 568 |
|
| 569 |
+
class IntelligentTokenizerModelV61(nn.Module):
|
| 570 |
"""
|
| 571 |
+
Complete Intelligent Tokenizer Model v6.1
|
| 572 |
+
Pure learning-based with curriculum learning
|
| 573 |
+
- No language labels during training
|
| 574 |
+
- Curriculum learning for boundaries
|
| 575 |
+
- Group-aware position encodings
|
| 576 |
"""
|
| 577 |
+
|
| 578 |
def __init__(
|
| 579 |
self,
|
| 580 |
vocab_size: int = 260,
|
| 581 |
+
encoder_dims: List[int] = [768, 896, 1024, 1152, 1280], # v6.1 dimensions
|
| 582 |
+
encoder_heads: List[int] = [12, 14, 16, 18, 20], # v6.1: Optimal heads per layer
|
| 583 |
+
decoder_hidden: int = 1280, # Match final encoder dim
|
| 584 |
+
decoder_heads: int = 16, # v6.1: 80 per head for decoder
|
| 585 |
+
num_decoder_layers: int = 8, # v6.1 FINAL: 8 layers for better reconstruction
|
| 586 |
dropout: float = 0.1,
|
| 587 |
+
max_seq_len: int = 64 # v6.1.2: 64 chunk for compression-first
|
| 588 |
):
|
| 589 |
super().__init__()
|
| 590 |
+
|
| 591 |
+
# v6.1 Components with optimized head counts
|
| 592 |
self.tokenizer = ByteTokenizer(max_seq_len)
|
| 593 |
+
self.encoder = ByteEncoderV61(vocab_size, encoder_dims, encoder_heads, dropout, max_seq_len)
|
| 594 |
+
self.decoder = TransformerDecoder(vocab_size, decoder_hidden, decoder_heads, num_decoder_layers, dropout, max_seq_len)
|
| 595 |
+
self.cross_attention = CrossAttention(encoder_dims[-1], 20, dropout) # 20 heads for 1280d
|
| 596 |
|
| 597 |
def forward(
|
| 598 |
self,
|
|
|
|
| 601 |
attention_mask: Optional[torch.Tensor] = None,
|
| 602 |
decoder_input_ids: Optional[torch.Tensor] = None,
|
| 603 |
labels: Optional[torch.Tensor] = None,
|
| 604 |
+
boundary_labels: Optional[torch.Tensor] = None, # v6.1: for curriculum learning
|
| 605 |
+
epoch: int = 0, # v6.1: for curriculum schedule
|
| 606 |
use_cross_attention: bool = True
|
| 607 |
) -> Dict[str, torch.Tensor]:
|
| 608 |
# Tokenize if text input
|
|
|
|
| 615 |
batch_size, seq_len = input_ids.shape
|
| 616 |
device = input_ids.device
|
| 617 |
|
| 618 |
+
# v6.1: Encode with curriculum learning
|
| 619 |
+
encoder_outputs = self.encoder(input_ids, attention_mask, boundary_labels, epoch)
|
| 620 |
+
encoder_hidden = encoder_outputs['last_hidden_state'] # v6.1: [batch, seq, 1280]
|
| 621 |
+
|
| 622 |
+
# v6.1: μ°¨μ νμΈ - μ΅μ’
μ°¨μμ 1280
|
| 623 |
+
assert encoder_hidden.size(-1) == 1280, f"Encoder dim mismatch: {encoder_hidden.size(-1)}"
|
| 624 |
+
|
| 625 |
+
# Prepare decoder input for teacher forcing during training
|
| 626 |
+
if decoder_input_ids is None:
|
| 627 |
+
if labels is not None:
|
| 628 |
+
# During training, use shifted labels as decoder input (teacher forcing)
|
| 629 |
+
# Add BOS at the beginning and remove last token
|
| 630 |
+
bos_tokens = torch.full((batch_size, 1), self.tokenizer.BOS, device=labels.device, dtype=labels.dtype)
|
| 631 |
+
decoder_input_ids = torch.cat([bos_tokens, labels[:, :-1]], dim=1)
|
| 632 |
+
else:
|
| 633 |
+
# For inference/test, start with BOS token
|
| 634 |
+
decoder_input_ids = torch.full((batch_size, 1), self.tokenizer.BOS, device=device, dtype=torch.long)
|
| 635 |
+
|
| 636 |
# Decode
|
| 637 |
decoder_outputs = self.decoder(
|
| 638 |
encoder_hidden,
|
|
|
|
| 673 |
decoder_outputs['logits'].reshape(-1, decoder_outputs['logits'].size(-1)),
|
| 674 |
labels.reshape(-1)
|
| 675 |
)
|
| 676 |
+
|
| 677 |
+
# Boundary loss (if boundary labels provided)
|
| 678 |
+
boundary_loss = 0
|
| 679 |
+
if boundary_labels is not None and encoder_outputs.get('eojeol_boundaries') is not None:
|
| 680 |
+
# Eojeol boundary loss
|
| 681 |
+
eojeol_boundaries = encoder_outputs['eojeol_boundaries'] # [batch, seq, 4]
|
| 682 |
+
if eojeol_boundaries.size(1) == boundary_labels.size(1):
|
| 683 |
+
# Ensure boundary labels are in valid range (0-3)
|
| 684 |
+
# Clamp to valid range to prevent CUDA errors
|
| 685 |
+
boundary_labels_clamped = torch.clamp(boundary_labels, min=0, max=3)
|
| 686 |
+
|
| 687 |
+
boundary_loss_fct = nn.CrossEntropyLoss(ignore_index=-1) # Use -1 for padding
|
| 688 |
+
boundary_loss = boundary_loss_fct(
|
| 689 |
+
eojeol_boundaries.reshape(-1, 4),
|
| 690 |
+
boundary_labels_clamped.reshape(-1)
|
| 691 |
+
) * 0.5 # Weight for boundary loss
|
| 692 |
+
|
| 693 |
# Relation loss (if cross-attention used)
|
| 694 |
relation_loss = 0
|
| 695 |
if relation_logits is not None:
|
| 696 |
# μκΈ° κ΄κ³λ identity (class 0)μ¬μΌ ν¨
|
| 697 |
batch_identity = torch.zeros(batch_size, dtype=torch.long, device=device)
|
| 698 |
relation_loss = F.cross_entropy(relation_logits, batch_identity) * 0.1
|
| 699 |
+
|
| 700 |
+
loss = recon_loss + boundary_loss + relation_loss
|
| 701 |
|
| 702 |
return {
|
| 703 |
'loss': loss,
|
| 704 |
'logits': decoder_outputs['logits'],
|
| 705 |
+
'decoder_logits': decoder_outputs['logits'], # Add for compatibility
|
| 706 |
'encoder_hidden_states': encoder_hidden,
|
| 707 |
'decoder_hidden_states': decoder_hidden,
|
| 708 |
'pooled_output': encoder_outputs['pooled_output'],
|
| 709 |
'cross_attention': cross_attn_outputs['cross_attention'] if cross_attn_outputs else None,
|
| 710 |
'relation_logits': relation_logits,
|
| 711 |
+
'all_encoder_states': encoder_outputs.get('all_hidden_states', None),
|
| 712 |
+
# Add boundary predictions for visualization
|
| 713 |
+
'char_boundaries': encoder_outputs.get('char_boundaries'),
|
| 714 |
+
'eojeol_boundaries': encoder_outputs.get('eojeol_boundaries'),
|
| 715 |
+
'phrase_boundaries': encoder_outputs.get('phrase_boundaries'),
|
| 716 |
+
'discovered_patterns': encoder_outputs.get('discovered_patterns')
|
| 717 |
}
|
| 718 |
|
| 719 |
def encode_text(self, text: str) -> torch.Tensor:
|