#!/usr/bin/env python # -*- coding: utf-8 -*- """ Intelligent Tokenizer v6.0 - Working Demo for Hugging Face Spaces 실제 작동하는 데모 - 시뮬레이션 없음 """ import gradio as gr import torch import sys import io from pathlib import Path import json import time # UTF-8 설정 if sys.stdout.encoding != 'utf-8': sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8') # Add path sys.path.append(str(Path(__file__).parent)) # Import actual modules from core.boundary_aware_model import BoundaryAwareTokenizerModel from src.core.byte_tokenizer_v6 import ByteTokenizerV6 # Device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class IntelligentTokenizerDemo: def __init__(self): """Initialize the actual model""" self.device = device self.tokenizer = ByteTokenizerV6() self.model = None self.load_model() def load_model(self): """Load the actual trained model""" try: # Try loading from pytorch_model.bin first (extracted weights) model_path = Path("pytorch_model.bin") if not model_path.exists(): # Fallback to checkpoint model_path = Path("checkpoints/latest_checkpoint.pt") if model_path.exists(): print(f"Loading model from {model_path}...") checkpoint = torch.load(model_path, map_location=self.device, weights_only=False) # Get model config if 'model_config' in checkpoint: model_config = checkpoint['model_config'] else: # Load from config.json with open("config.json", "r") as f: config = json.load(f) model_config = { 'vocab_size': config['vocab_size'], 'hidden_dim': config.get('decoder_hidden', 768), 'num_heads': config['num_heads'], 'num_encoder_layers': 5, 'num_decoder_layers': config['num_decoder_layers'], 'dropout': config['dropout'] } # Initialize model self.model = BoundaryAwareTokenizerModel(**model_config) # Load weights if 'model_state_dict' in checkpoint: self.model.load_state_dict(checkpoint['model_state_dict']) else: self.model.load_state_dict(checkpoint) self.model = self.model.to(self.device) self.model.eval() print("Model loaded successfully!") else: print("Warning: No model checkpoint found, using untrained model") # Initialize untrained model for testing model_config = { 'vocab_size': 260, 'hidden_dim': 768, 'num_heads': 8, 'num_encoder_layers': 5, 'num_decoder_layers': 6, 'dropout': 0.1 } self.model = BoundaryAwareTokenizerModel(**model_config) self.model = self.model.to(self.device) self.model.eval() except Exception as e: print(f"Error loading model: {e}") raise def embed_text(self, text): """실제 임베딩 생성""" if not text: return None, "Please enter text" try: # Encode text encoded = self.tokenizer.encode(text) byte_ids = encoded['input_ids'] # Truncate if too long if len(byte_ids) > 256: byte_ids = byte_ids[:256] byte_ids[-1] = self.tokenizer.EOS # Prepare tensors input_ids = torch.tensor([byte_ids], device=self.device) attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device) # Generate embeddings with torch.no_grad(): encoder_outputs = self.model.encoder(input_ids, attention_mask) embeddings = encoder_outputs['last_hidden_state'] # Statistics original_bytes = len(text.encode('utf-8')) compressed_tokens = embeddings.shape[1] compression_ratio = original_bytes / compressed_tokens if compressed_tokens > 0 else 0 result = f"""✅ **Embedding Generated Successfully** **Input Text:** {text[:100]}{'...' if len(text) > 100 else ''} **Original Size:** {original_bytes} bytes **Compressed Size:** {compressed_tokens} tokens **Compression Ratio:** {compression_ratio:.2f}x **Embedding Shape:** {list(embeddings.shape)} **Device:** {self.device} **First 10 values:** {embeddings[0, 0, :10].cpu().numpy().tolist()} """ return embeddings, result except Exception as e: return None, f"Error: {str(e)}" def restore_text(self, text): """실제 복원 테스트""" if not text: return "Please enter text" try: # Encode text encoded = self.tokenizer.encode(text) byte_ids = encoded['input_ids'] # Truncate if needed if len(byte_ids) > 256: byte_ids = byte_ids[:256] byte_ids[-1] = self.tokenizer.EOS truncated = True else: truncated = False if len(byte_ids) <= 1: return "Text too short for restoration test" # Prepare tensors input_ids = torch.tensor([byte_ids], device=self.device) attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device) # Teacher forcing restoration with torch.no_grad(): decoder_input = input_ids[:, :-1] labels = input_ids[:, 1:] outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input, labels=labels, use_cross_attention=True ) # Get predictions predictions = torch.argmax(outputs['logits'], dim=-1) accuracy = (predictions == labels).float().mean().item() # Decode predictions pred_list = predictions[0].cpu().tolist() full_sequence = [self.tokenizer.BOS] + pred_list # Convert to text filtered = [b for b in full_sequence if 0 <= b < 256] if filtered: restored_bytes = bytes(filtered) restored_text = restored_bytes.decode('utf-8', errors='ignore') else: restored_text = "[Unable to restore]" result = f"""✅ **Restoration Test Complete** **Original Text:** {text[:100]}{'...' if len(text) > 100 else ''} **Restored Text:** {restored_text[:100]}{'...' if len(restored_text) > 100 else ''} **Accuracy:** {accuracy:.1%} **Bytes Processed:** {len(byte_ids)} {'**Note:** Text was truncated to 256 bytes' if truncated else ''} **Status:** {'Perfect Match! ✨' if accuracy > 0.95 else 'Good Match' if accuracy > 0.8 else 'Partial Match'} """ return result except Exception as e: return f"Error: {str(e)}" def compress_stats(self, text): """압축 통계 분석""" if not text: return "Please enter text" try: lines = text.strip().split('\n') results = [] for line in lines[:10]: # Limit to 10 lines if not line.strip(): continue # Get compression stats encoded = self.tokenizer.encode(line) byte_ids = encoded['input_ids'] if len(byte_ids) > 256: byte_ids = byte_ids[:256] input_ids = torch.tensor([byte_ids], device=self.device) attention_mask = torch.tensor([encoded['attention_mask'][:len(byte_ids)]], device=self.device) with torch.no_grad(): encoder_outputs = self.model.encoder(input_ids, attention_mask) compressed_size = encoder_outputs['last_hidden_state'].shape[1] original_size = len(line.encode('utf-8')) ratio = original_size / compressed_size if compressed_size > 0 else 0 results.append({ 'text': line[:50] + '...' if len(line) > 50 else line, 'original': original_size, 'compressed': compressed_size, 'ratio': ratio }) # Format results output = "**Compression Analysis Results**\n\n" output += "| Text | Original | Compressed | Ratio |\n" output += "|------|----------|------------|-------|\n" for r in results: output += f"| {r['text']} | {r['original']} bytes | {r['compressed']} tokens | {r['ratio']:.2f}x |\n" # Average stats if results: avg_ratio = sum(r['ratio'] for r in results) / len(results) total_original = sum(r['original'] for r in results) total_compressed = sum(r['compressed'] for r in results) output += f"\n**Summary:**\n" output += f"- Average Compression: {avg_ratio:.2f}x\n" output += f"- Total Original: {total_original} bytes\n" output += f"- Total Compressed: {total_compressed} tokens\n" output += f"- Overall Ratio: {total_original/total_compressed if total_compressed > 0 else 0:.2f}x\n" return output except Exception as e: return f"Error: {str(e)}" # Initialize demo print("Initializing Intelligent Tokenizer Demo...") demo = IntelligentTokenizerDemo() # Gradio Interface with gr.Blocks(title="Intelligent Tokenizer v6.0", theme=gr.themes.Base()) as app: gr.Markdown(""" # 🚀 Intelligent Tokenizer v6.0 - Live Demo **World's First Pure Learning-Based Byte-Level Tokenizer** - No vocabulary files, no language rules - just intelligence! - 260 fixed vocab (256 bytes + 4 special tokens) - Works with ANY language/script/emoji """) with gr.Tab("🔤 Embedding"): with gr.Row(): with gr.Column(): embed_input = gr.Textbox( label="Input Text", placeholder="Enter any text in any language...", lines=3 ) embed_btn = gr.Button("Generate Embedding", variant="primary") with gr.Column(): embed_output = gr.Markdown(label="Result") embed_btn.click( lambda x: demo.embed_text(x)[1], inputs=embed_input, outputs=embed_output ) with gr.Tab("🔄 Restoration"): with gr.Row(): with gr.Column(): restore_input = gr.Textbox( label="Input Text", placeholder="Enter text to test restoration...", lines=3 ) restore_btn = gr.Button("Test Restoration", variant="primary") with gr.Column(): restore_output = gr.Markdown(label="Result") restore_btn.click( demo.restore_text, inputs=restore_input, outputs=restore_output ) with gr.Tab("📊 Compression Analysis"): with gr.Row(): with gr.Column(): compress_input = gr.Textbox( label="Input Text (one item per line)", placeholder="Enter multiple texts, one per line...", lines=5 ) compress_btn = gr.Button("Analyze Compression", variant="primary") with gr.Column(): compress_output = gr.Markdown(label="Analysis") compress_btn.click( demo.compress_stats, inputs=compress_input, outputs=compress_output ) with gr.Tab("ℹ️ About"): gr.Markdown(""" ## About Intelligent Tokenizer v6.0 ### Key Features: - **Pure Learning-Based**: No predefined rules or vocabularies - **Universal Coverage**: Works with all 204+ languages equally - **Compression**: 2-3x currently, targeting 5-10x - **Real Model**: This demo uses the actual trained model (1.2GB) ### Architecture: - Encoder: 5-layer transformer (512→768 dims) - Decoder: 6-layer transformer (768 hidden) - Total: ~274M parameters - Training: 23 epochs on multilingual data ### Development: - Solo developer, 4 months development - Trained on personal RTX 3060 - No prior AI experience ### Links: - [GitHub Repository](https://github.com/ggunio/intelligent-tokenizer) - [Hugging Face Model](https://huggingface.co/ggunio/intelligent-tokenizer-v6) """) if __name__ == "__main__": print(f"Running on device: {device}") print("Launching Gradio app...") app.launch()