Spaces:
Running
Running
| # π Document Q&A Demo | CPU-only HF Space | |
| import gradio as gr | |
| from transformers import pipeline | |
| # Load a fast, accurate QA model | |
| qa_pipeline = pipeline( | |
| "question-answering", | |
| model="deepset/roberta-base-squad2", | |
| device=-1 # force CPU | |
| ) | |
| def answer_question(context: str, question: str): | |
| if not context.strip() or not question.strip(): | |
| return "Please provide both a document context and a question." | |
| result = qa_pipeline(question=question, context=context) | |
| answer = result["answer"] | |
| score = round(result["score"], 3) | |
| return f"{answer} (confidence: {score})" | |
| with gr.Blocks(title="π Document Q&A") as demo: | |
| gr.Markdown( | |
| "# π Document Q&A\n" | |
| "Paste in any text (policy, FAQ, product manual), ask a question, and get an instant answer." | |
| ) | |
| with gr.Row(): | |
| ctx = gr.Textbox(lines=10, placeholder="Paste your document text here...", label="Document Context") | |
| qry = gr.Textbox(lines=2, placeholder="Ask a question about the text above...", label="Question") | |
| btn = gr.Button("Get Answer π", variant="primary") | |
| out = gr.Textbox(label="Answer", interactive=False) | |
| btn.click(answer_question, [ctx, qry], out) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0") | |