Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,17 +3,55 @@ import cv2
|
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
-
import spaces
|
| 7 |
-
|
|
|
|
| 8 |
from PIL import Image, ImageOps
|
| 9 |
from transformers import AutoModelForImageSegmentation
|
| 10 |
from torchvision import transforms
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
torch.set_float32_matmul_precision('high')
|
| 13 |
torch.jit.script = lambda f: f
|
| 14 |
-
|
| 15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
|
|
|
|
| 17 |
def refine_foreground(image, mask, r=90):
|
| 18 |
if mask.size != image.size:
|
| 19 |
mask = mask.resize(image.size)
|
|
@@ -33,14 +71,11 @@ def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
|
| 33 |
if isinstance(image, Image.Image):
|
| 34 |
image = np.array(image) / 255.0
|
| 35 |
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
| 36 |
-
|
| 37 |
blurred_FA = cv2.blur(F * alpha, (r, r))
|
| 38 |
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
|
| 39 |
-
|
| 40 |
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
| 41 |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 42 |
-
F = blurred_F + alpha *
|
| 43 |
-
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
|
| 44 |
F = np.clip(F, 0, 1)
|
| 45 |
return F, blurred_B
|
| 46 |
|
|
@@ -67,42 +102,33 @@ def remove_background_wrapper(image):
|
|
| 67 |
if image is None:
|
| 68 |
raise gr.Error("Please upload an image.")
|
| 69 |
image_ori = Image.fromarray(image).convert('RGB')
|
| 70 |
-
# Call the processing function
|
| 71 |
foreground, background, pred_pil, reverse_mask = remove_background(image_ori)
|
| 72 |
return foreground, background, pred_pil, reverse_mask
|
| 73 |
|
| 74 |
-
@spaces.GPU
|
| 75 |
def remove_background(image_ori):
|
| 76 |
original_size = image_ori.size
|
| 77 |
-
|
| 78 |
-
# Preprocess the image
|
| 79 |
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
|
| 80 |
image_proc = image_preprocessor.proc(image_ori)
|
| 81 |
image_proc = image_proc.unsqueeze(0)
|
| 82 |
-
|
| 83 |
-
# Prediction
|
| 84 |
with torch.no_grad():
|
| 85 |
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
|
| 86 |
pred = preds[0].squeeze()
|
| 87 |
-
|
| 88 |
-
# Process Results
|
| 89 |
pred_pil = transforms.ToPILImage()(pred)
|
| 90 |
-
pred_pil = pred_pil.resize(original_size, Image.BICUBIC)
|
| 91 |
-
|
| 92 |
-
# Create reverse mask (background mask)
|
| 93 |
reverse_mask = ImageOps.invert(pred_pil)
|
| 94 |
-
|
| 95 |
-
# Create foreground image (object with transparent background)
|
| 96 |
foreground = image_ori.copy()
|
| 97 |
foreground.putalpha(pred_pil)
|
| 98 |
-
|
| 99 |
-
# Create background image
|
| 100 |
background = image_ori.copy()
|
| 101 |
background.putalpha(reverse_mask)
|
| 102 |
-
|
| 103 |
torch.cuda.empty_cache()
|
| 104 |
-
|
| 105 |
-
# Return images in the specified order
|
| 106 |
return foreground, background, pred_pil, reverse_mask
|
| 107 |
|
| 108 |
# Custom CSS for button styling
|
|
@@ -123,11 +149,12 @@ custom_css = """
|
|
| 123 |
animation: gradient-animation 15s ease infinite;
|
| 124 |
border-radius: 12px;
|
| 125 |
color: black;
|
|
|
|
| 126 |
}
|
| 127 |
"""
|
| 128 |
|
| 129 |
-
with
|
| 130 |
-
|
| 131 |
with gr.Row():
|
| 132 |
with gr.Column():
|
| 133 |
image_input = gr.Image(type="numpy", sources=['upload'], label="Upload Image")
|
|
@@ -138,7 +165,6 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
|
|
| 138 |
output_foreground_mask = gr.Image(type="pil", label="Foreground Mask")
|
| 139 |
output_background_mask = gr.Image(type="pil", label="Background Mask")
|
| 140 |
|
| 141 |
-
# Link the button to the processing function
|
| 142 |
btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[
|
| 143 |
output_foreground, output_background, output_foreground_mask, output_background_mask])
|
| 144 |
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
+
import spaces
|
| 7 |
+
from gradio.themes.base import Base
|
| 8 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 9 |
from PIL import Image, ImageOps
|
| 10 |
from transformers import AutoModelForImageSegmentation
|
| 11 |
from torchvision import transforms
|
| 12 |
|
| 13 |
+
# Custom White Theme with Inter font
|
| 14 |
+
class WhiteTheme(Base):
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
*,
|
| 18 |
+
primary_hue: colors.Color | str = colors.orange,
|
| 19 |
+
font: fonts.Font | str = fonts.GoogleFont("Inter"),
|
| 20 |
+
font_mono: fonts.Font | str = fonts.GoogleFont("Inter")
|
| 21 |
+
):
|
| 22 |
+
super().__init__(
|
| 23 |
+
primary_hue=primary_hue,
|
| 24 |
+
font=font,
|
| 25 |
+
font_mono=font_mono,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
self.set(
|
| 29 |
+
body_background_fill="white",
|
| 30 |
+
block_background_fill="white",
|
| 31 |
+
panel_background_fill="white",
|
| 32 |
+
body_text_color="black",
|
| 33 |
+
block_label_text_color="black",
|
| 34 |
+
block_border_color="white",
|
| 35 |
+
panel_border_color="white",
|
| 36 |
+
input_border_color="lightgray",
|
| 37 |
+
button_primary_background_fill="*primary_500",
|
| 38 |
+
button_primary_background_fill_hover="*primary_600",
|
| 39 |
+
button_primary_text_color="white",
|
| 40 |
+
button_secondary_background_fill="white",
|
| 41 |
+
button_secondary_border_color="lightgray",
|
| 42 |
+
block_shadow="none",
|
| 43 |
+
button_shadow="none",
|
| 44 |
+
input_shadow="none",
|
| 45 |
+
slider_color="*primary_500",
|
| 46 |
+
slider_track_color="lightgray",
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Your existing setup code
|
| 50 |
torch.set_float32_matmul_precision('high')
|
| 51 |
torch.jit.script = lambda f: f
|
|
|
|
| 52 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 53 |
|
| 54 |
+
# Keep all your existing functions unchanged
|
| 55 |
def refine_foreground(image, mask, r=90):
|
| 56 |
if mask.size != image.size:
|
| 57 |
mask = mask.resize(image.size)
|
|
|
|
| 71 |
if isinstance(image, Image.Image):
|
| 72 |
image = np.array(image) / 255.0
|
| 73 |
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
|
|
|
| 74 |
blurred_FA = cv2.blur(F * alpha, (r, r))
|
| 75 |
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
|
|
|
|
| 76 |
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
| 77 |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 78 |
+
F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
|
|
|
|
| 79 |
F = np.clip(F, 0, 1)
|
| 80 |
return F, blurred_B
|
| 81 |
|
|
|
|
| 102 |
if image is None:
|
| 103 |
raise gr.Error("Please upload an image.")
|
| 104 |
image_ori = Image.fromarray(image).convert('RGB')
|
|
|
|
| 105 |
foreground, background, pred_pil, reverse_mask = remove_background(image_ori)
|
| 106 |
return foreground, background, pred_pil, reverse_mask
|
| 107 |
|
| 108 |
+
@spaces.GPU
|
| 109 |
def remove_background(image_ori):
|
| 110 |
original_size = image_ori.size
|
|
|
|
|
|
|
| 111 |
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
|
| 112 |
image_proc = image_preprocessor.proc(image_ori)
|
| 113 |
image_proc = image_proc.unsqueeze(0)
|
| 114 |
+
|
|
|
|
| 115 |
with torch.no_grad():
|
| 116 |
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
|
| 117 |
pred = preds[0].squeeze()
|
| 118 |
+
|
|
|
|
| 119 |
pred_pil = transforms.ToPILImage()(pred)
|
| 120 |
+
pred_pil = pred_pil.resize(original_size, Image.BICUBIC)
|
| 121 |
+
|
|
|
|
| 122 |
reverse_mask = ImageOps.invert(pred_pil)
|
| 123 |
+
|
|
|
|
| 124 |
foreground = image_ori.copy()
|
| 125 |
foreground.putalpha(pred_pil)
|
| 126 |
+
|
|
|
|
| 127 |
background = image_ori.copy()
|
| 128 |
background.putalpha(reverse_mask)
|
| 129 |
+
|
| 130 |
torch.cuda.empty_cache()
|
| 131 |
+
|
|
|
|
| 132 |
return foreground, background, pred_pil, reverse_mask
|
| 133 |
|
| 134 |
# Custom CSS for button styling
|
|
|
|
| 149 |
animation: gradient-animation 15s ease infinite;
|
| 150 |
border-radius: 12px;
|
| 151 |
color: black;
|
| 152 |
+
font-family: 'Inter', sans-serif;
|
| 153 |
}
|
| 154 |
"""
|
| 155 |
|
| 156 |
+
# Create the interface with the custom theme
|
| 157 |
+
with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo:
|
| 158 |
with gr.Row():
|
| 159 |
with gr.Column():
|
| 160 |
image_input = gr.Image(type="numpy", sources=['upload'], label="Upload Image")
|
|
|
|
| 165 |
output_foreground_mask = gr.Image(type="pil", label="Foreground Mask")
|
| 166 |
output_background_mask = gr.Image(type="pil", label="Background Mask")
|
| 167 |
|
|
|
|
| 168 |
btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[
|
| 169 |
output_foreground, output_background, output_foreground_mask, output_background_mask])
|
| 170 |
|