Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import networkx as nx
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import jraph
|
| 4 |
+
import jax.numpy as jnp
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
import spacy
|
| 7 |
+
|
| 8 |
+
dataset = load_dataset("gigant/tib_transcripts")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
nlp = spacy.load("en_core_web_sm")
|
| 12 |
+
|
| 13 |
+
def dependency_parser(sentences):
|
| 14 |
+
return [nlp(sentence) for sentence in sentences]
|
| 15 |
+
|
| 16 |
+
def construct_dependency_graph(docs):
|
| 17 |
+
"""
|
| 18 |
+
docs is a list of outputs of the SpaCy dependency parser
|
| 19 |
+
"""
|
| 20 |
+
graphs = []
|
| 21 |
+
for doc in docs:
|
| 22 |
+
nodes = [token.text for token in doc]
|
| 23 |
+
senders = []
|
| 24 |
+
receivers = []
|
| 25 |
+
for token in doc:
|
| 26 |
+
for child in token.children:
|
| 27 |
+
senders.append(token.i)
|
| 28 |
+
receivers.append(child.i)
|
| 29 |
+
graphs.append({"nodes": nodes, "senders": senders, "receivers": receivers})
|
| 30 |
+
return graphs
|
| 31 |
+
|
| 32 |
+
def to_jraph(graph):
|
| 33 |
+
nodes = graph["nodes"]
|
| 34 |
+
s = graph["senders"]
|
| 35 |
+
r = graph["receivers"]
|
| 36 |
+
|
| 37 |
+
# Define a three node graph, each node has an integer as its feature.
|
| 38 |
+
node_features = jnp.array([0]*len(nodes))
|
| 39 |
+
|
| 40 |
+
# We will construct a graph for which there is a directed edge between each node
|
| 41 |
+
# and its successor. We define this with `senders` (source nodes) and `receivers`
|
| 42 |
+
# (destination nodes).
|
| 43 |
+
senders = jnp.array(s)
|
| 44 |
+
receivers = jnp.array(r)
|
| 45 |
+
|
| 46 |
+
# We then save the number of nodes and the number of edges.
|
| 47 |
+
# This information is used to make running GNNs over multiple graphs
|
| 48 |
+
# in a GraphsTuple possible.
|
| 49 |
+
n_node = jnp.array([len(nodes)])
|
| 50 |
+
n_edge = jnp.array([len(s)])
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
return jraph.GraphsTuple(nodes=node_features, senders=senders, receivers=receivers,
|
| 54 |
+
edges=None, n_node=n_node, n_edge=n_edge, globals=None)
|
| 55 |
+
|
| 56 |
+
def convert_jraph_to_networkx_graph(jraph_graph: jraph.GraphsTuple) -> nx.Graph:
|
| 57 |
+
nodes, edges, receivers, senders, _, _, _ = jraph_graph
|
| 58 |
+
nx_graph = nx.DiGraph()
|
| 59 |
+
if nodes is None:
|
| 60 |
+
for n in range(jraph_graph.n_node[0]):
|
| 61 |
+
nx_graph.add_node(n)
|
| 62 |
+
else:
|
| 63 |
+
for n in range(jraph_graph.n_node[0]):
|
| 64 |
+
nx_graph.add_node(n, node_feature=nodes[n])
|
| 65 |
+
if edges is None:
|
| 66 |
+
for e in range(jraph_graph.n_edge[0]):
|
| 67 |
+
nx_graph.add_edge(int(senders[e]), int(receivers[e]))
|
| 68 |
+
else:
|
| 69 |
+
for e in range(jraph_graph.n_edge[0]):
|
| 70 |
+
nx_graph.add_edge(
|
| 71 |
+
int(senders[e]), int(receivers[e]), edge_feature=edges[e])
|
| 72 |
+
return nx_graph
|
| 73 |
+
|
| 74 |
+
def plot_graph_sentence(sentence):
|
| 75 |
+
docs = dependency_parser([sentence])
|
| 76 |
+
graphs = construct_dependency_graph(docs)
|
| 77 |
+
g = to_jraph(graphs[0])
|
| 78 |
+
nx_graph = convert_jraph_to_networkx_graph(g)
|
| 79 |
+
pos = nx.spring_layout(nx_graph)
|
| 80 |
+
plot = plt.figure(figsize=(6, 6))
|
| 81 |
+
nx.draw(nx_graph, pos=pos, labels={i: e for i,e in enumerate(graphs[0]["nodes"])}, with_labels = True,
|
| 82 |
+
node_size=500, font_color='black', node_color="yellow")
|
| 83 |
+
return plot
|
| 84 |
+
|
| 85 |
+
def get_list_sentences(id):
|
| 86 |
+
return gr.update(choices = dataset["train"][id]["transcript"].split("."))
|
| 87 |
+
|
| 88 |
+
with gr.Blocks() as demo:
|
| 89 |
+
id = gr.Slider(maximum=len(dataset["train"]) - 1)
|
| 90 |
+
sentence = gr.Dropdown(choices = dataset["train"][0]["transcript"].split("."), interactive = True)
|
| 91 |
+
plot = gr.Plot()
|
| 92 |
+
id.change(get_list_sentences, id, sentence)
|
| 93 |
+
sentence.change(plot_graph_sentence, sentence, plot)
|
| 94 |
+
|
| 95 |
+
demo.launch()
|