Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| from textwrap import dedent | |
| from huggingface_hub import login | |
| import os | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| login( | |
| token=os.environ["HF_TOKEN"], | |
| ) | |
| MODEL_LIST = [ | |
| "EmergentMethods/Phi-3-mini-4k-instruct-graph", | |
| "EmergentMethods/Phi-3-mini-128k-instruct-graph", | |
| # "EmergentMethods/Phi-3-medium-128k-instruct-graph" | |
| ] | |
| torch.random.manual_seed(0) | |
| class Phi3InstructGraph: | |
| def __init__(self, model = "EmergentMethods/Phi-3-mini-4k-instruct-graph"): | |
| if model not in MODEL_LIST: | |
| raise ValueError(f"model must be one of {MODEL_LIST}") | |
| self.model_path = model | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| self.model_path, | |
| device_map="cuda", | |
| torch_dtype="auto", | |
| trust_remote_code=True, | |
| ) | |
| self.tokenizer = AutoTokenizer.from_pretrained(self.model_path) | |
| self.pipe = pipeline( | |
| "text-generation", | |
| model=self.model, | |
| tokenizer=self.tokenizer, | |
| ) | |
| def _generate(self, messages): | |
| generation_args = { | |
| "max_new_tokens": 2000, | |
| "return_full_text": False, | |
| "temperature": 0.1, | |
| "do_sample": False, | |
| } | |
| return self.pipe(messages, **generation_args) | |
| def _get_messages(self, text): | |
| context = dedent("""\n | |
| A chat between a curious user and an artificial intelligence Assistant. The Assistant is an expert at identifying entities and relationships in text. The Assistant responds in JSON output only. | |
| The User provides text in the format: | |
| -------Text begin------- | |
| <User provided text> | |
| -------Text end------- | |
| The Assistant follows the following steps before replying to the User: | |
| 1. **identify the most important entities** The Assistant identifies the most important entities in the text. These entities are listed in the JSON output under the key "nodes", they follow the structure of a list of dictionaries where each dict is: | |
| "nodes":[{"id": <entity N>, "type": <type>, "detailed_type": <detailed type>}, ...] | |
| where "type": <type> is a broad categorization of the entity. "detailed type": <detailed_type> is a very descriptive categorization of the entity. | |
| 2. **determine relationships** The Assistant uses the text between -------Text begin------- and -------Text end------- to determine the relationships between the entities identified in the "nodes" list defined above. These relationships are called "edges" and they follow the structure of: | |
| "edges":[{"from": <entity 1>, "to": <entity 2>, "label": <relationship>}, ...] | |
| The <entity N> must correspond to the "id" of an entity in the "nodes" list. | |
| The Assistant never repeats the same node twice. The Assistant never repeats the same edge twice. | |
| The Assistant responds to the User in JSON only, according to the following JSON schema: | |
| {"type":"object","properties":{"nodes":{"type":"array","items":{"type":"object","properties":{"id":{"type":"string"},"type":{"type":"string"},"detailed_type":{"type":"string"}},"required":["id","type","detailed_type"],"additionalProperties":false}},"edges":{"type":"array","items":{"type":"object","properties":{"from":{"type":"string"},"to":{"type":"string"},"label":{"type":"string"}},"required":["from","to","label"],"additionalProperties":false}}},"required":["nodes","edges"],"additionalProperties":false} | |
| """) | |
| user_message = dedent(f"""\n | |
| -------Text begin------- | |
| {text} | |
| -------Text end------- | |
| """) | |
| if self.model_path == "EmergentMethods/Phi-3-medium-128k-instruct-graph": | |
| # model without system message | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": f"{context}\n Input: {user_message}", | |
| } | |
| ] | |
| return messages | |
| else: | |
| messages = [ | |
| { | |
| "role": "system", | |
| "content": context | |
| }, | |
| { | |
| "role": "user", | |
| "content": user_message | |
| } | |
| ] | |
| return messages | |
| def extract(self, text): | |
| messages = self._get_messages(text) | |
| pipe_output = self._generate(messages) | |
| # print("pipe_output json", pipe_output[0]["generated_text"]) | |
| return pipe_output[0]["generated_text"] | |