Spaces:
Running
on
Zero
Running
on
Zero
Remove phi3 medium.
Browse files- app.py +0 -10
- phi3_instruct_graph.py +1 -1
app.py
CHANGED
|
@@ -11,8 +11,6 @@ from spacy import displacy
|
|
| 11 |
from spacy.tokens import Span
|
| 12 |
import random
|
| 13 |
|
| 14 |
-
json_example = {'nodes': [{'id': 'Aerosmith', 'type': 'organization', 'detailed_type': 'rock band'}, {'id': 'Steven Tyler', 'type': 'person', 'detailed_type': 'lead singer'}, {'id': 'vocal cord injury', 'type': 'medical condition', 'detailed_type': 'fractured larynx'}, {'id': 'retirement', 'type': 'event', 'detailed_type': 'announcement'}, {'id': 'touring', 'type': 'activity', 'detailed_type': 'musical performance'}, {'id': 'September 2023', 'type': 'date', 'detailed_type': 'specific time'}], 'edges': [{'from': 'Aerosmith', 'to': 'Steven Tyler', 'label': 'led by'}, {'from': 'Steven Tyler', 'to': 'vocal cord injury', 'label': 'suffered'}, {'from': 'vocal cord injury', 'to': 'retirement', 'label': 'caused'}, {'from': 'retirement', 'to': 'touring', 'label': 'ended'}, {'from': 'vocal cord injury', 'to': 'September 2023', 'label': 'occurred in'}]}
|
| 15 |
-
|
| 16 |
@spaces.GPU
|
| 17 |
def extract(text, model):
|
| 18 |
model = Phi3InstructGraph(model=model)
|
|
@@ -74,7 +72,6 @@ def create_custom_entity_viz(data, full_text):
|
|
| 74 |
spans = []
|
| 75 |
colors = {}
|
| 76 |
for node in data["nodes"]:
|
| 77 |
-
# entity_spans = [m.span() for m in re.finditer(re.escape(node["id"]), full_text)]
|
| 78 |
entity_spans = find_token_indices(doc, node["id"], full_text)
|
| 79 |
for dataentity in entity_spans:
|
| 80 |
start = dataentity["start"]
|
|
@@ -88,9 +85,6 @@ def create_custom_entity_viz(data, full_text):
|
|
| 88 |
if node["type"] not in colors:
|
| 89 |
colors[node["type"]] = get_random_light_color()
|
| 90 |
|
| 91 |
-
# for span in spans:
|
| 92 |
-
# print(f"Span: {span.text}, Label: {span.label_}")
|
| 93 |
-
|
| 94 |
doc.set_ents(spans, default="unmodified")
|
| 95 |
doc.spans["sc"] = spans
|
| 96 |
|
|
@@ -143,9 +137,7 @@ def create_graph(json_data):
|
|
| 143 |
# edge['smooth'] = {'type': 'curvedCW', 'roundness': 0.2}
|
| 144 |
|
| 145 |
html = nt.generate_html()
|
| 146 |
-
# need to remove ' from HTML
|
| 147 |
html = html.replace("'", '"')
|
| 148 |
-
# return html
|
| 149 |
|
| 150 |
return f"""<iframe style="width: 140%; height: 620px; margin: 0 auto;" name="result"
|
| 151 |
allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
|
|
@@ -158,7 +150,6 @@ def process_and_visualize(text, model):
|
|
| 158 |
if not text or not model:
|
| 159 |
raise gr.Error("Text and model must be provided.")
|
| 160 |
json_data = extract(text, model)
|
| 161 |
-
# json_data = json_example
|
| 162 |
entities_viz = create_custom_entity_viz(json_data, text)
|
| 163 |
|
| 164 |
graph_html = create_graph(json_data)
|
|
@@ -173,7 +164,6 @@ with gr.Blocks(title="Phi-3 Instruct Graph (by Emergent Methods") as demo:
|
|
| 173 |
with gr.Column(scale=1):
|
| 174 |
input_model = gr.Dropdown(
|
| 175 |
MODEL_LIST, label="Model",
|
| 176 |
-
# value=MODEL_LIST[0]
|
| 177 |
)
|
| 178 |
input_text = gr.TextArea(label="Text", info="The text to be extracted")
|
| 179 |
|
|
|
|
| 11 |
from spacy.tokens import Span
|
| 12 |
import random
|
| 13 |
|
|
|
|
|
|
|
| 14 |
@spaces.GPU
|
| 15 |
def extract(text, model):
|
| 16 |
model = Phi3InstructGraph(model=model)
|
|
|
|
| 72 |
spans = []
|
| 73 |
colors = {}
|
| 74 |
for node in data["nodes"]:
|
|
|
|
| 75 |
entity_spans = find_token_indices(doc, node["id"], full_text)
|
| 76 |
for dataentity in entity_spans:
|
| 77 |
start = dataentity["start"]
|
|
|
|
| 85 |
if node["type"] not in colors:
|
| 86 |
colors[node["type"]] = get_random_light_color()
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
doc.set_ents(spans, default="unmodified")
|
| 89 |
doc.spans["sc"] = spans
|
| 90 |
|
|
|
|
| 137 |
# edge['smooth'] = {'type': 'curvedCW', 'roundness': 0.2}
|
| 138 |
|
| 139 |
html = nt.generate_html()
|
|
|
|
| 140 |
html = html.replace("'", '"')
|
|
|
|
| 141 |
|
| 142 |
return f"""<iframe style="width: 140%; height: 620px; margin: 0 auto;" name="result"
|
| 143 |
allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
|
|
|
|
| 150 |
if not text or not model:
|
| 151 |
raise gr.Error("Text and model must be provided.")
|
| 152 |
json_data = extract(text, model)
|
|
|
|
| 153 |
entities_viz = create_custom_entity_viz(json_data, text)
|
| 154 |
|
| 155 |
graph_html = create_graph(json_data)
|
|
|
|
| 164 |
with gr.Column(scale=1):
|
| 165 |
input_model = gr.Dropdown(
|
| 166 |
MODEL_LIST, label="Model",
|
|
|
|
| 167 |
)
|
| 168 |
input_text = gr.TextArea(label="Text", info="The text to be extracted")
|
| 169 |
|
phi3_instruct_graph.py
CHANGED
|
@@ -13,7 +13,7 @@ login(
|
|
| 13 |
MODEL_LIST = [
|
| 14 |
"EmergentMethods/Phi-3-mini-4k-instruct-graph",
|
| 15 |
"EmergentMethods/Phi-3-mini-128k-instruct-graph",
|
| 16 |
-
|
| 17 |
]
|
| 18 |
|
| 19 |
torch.random.manual_seed(0)
|
|
|
|
| 13 |
MODEL_LIST = [
|
| 14 |
"EmergentMethods/Phi-3-mini-4k-instruct-graph",
|
| 15 |
"EmergentMethods/Phi-3-mini-128k-instruct-graph",
|
| 16 |
+
# "EmergentMethods/Phi-3-medium-128k-instruct-graph"
|
| 17 |
]
|
| 18 |
|
| 19 |
torch.random.manual_seed(0)
|