Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,37 +1,46 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph
|
| 4 |
-
from textwrap import dedent
|
| 5 |
import rapidjson
|
| 6 |
-
import spaces
|
| 7 |
from pyvis.network import Network
|
| 8 |
import networkx as nx
|
| 9 |
import spacy
|
| 10 |
from spacy import displacy
|
| 11 |
from spacy.tokens import Span
|
| 12 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
def extract(text, model):
|
| 16 |
-
model = Phi3InstructGraph(model=model)
|
| 17 |
-
result = model.extract(text)
|
| 18 |
-
return rapidjson.loads(result)
|
| 19 |
-
|
| 20 |
def handle_text(text):
|
| 21 |
return " ".join(text.split())
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def get_random_color():
|
| 34 |
-
return f"#{random.randint(0, 0xFFFFFF):06x}"
|
| 35 |
|
| 36 |
def find_token_indices(doc, substring, text):
|
| 37 |
result = []
|
|
@@ -48,9 +57,7 @@ def find_token_indices(doc, substring, text):
|
|
| 48 |
if token.idx + len(token) == end_index:
|
| 49 |
end_token = token.i + 1
|
| 50 |
|
| 51 |
-
if start_token is None
|
| 52 |
-
print(f"Token boundaries not found for '{substring}' at index {start_index}")
|
| 53 |
-
else:
|
| 54 |
result.append({
|
| 55 |
"start": start_token,
|
| 56 |
"end": end_token
|
|
@@ -59,12 +66,8 @@ def find_token_indices(doc, substring, text):
|
|
| 59 |
# Search for next occurrence
|
| 60 |
start_index = text.find(substring, end_index)
|
| 61 |
|
| 62 |
-
if not result:
|
| 63 |
-
print(f"Token boundaries not found for '{substring}'")
|
| 64 |
-
|
| 65 |
return result
|
| 66 |
|
| 67 |
-
|
| 68 |
def create_custom_entity_viz(data, full_text):
|
| 69 |
nlp = spacy.blank("xx")
|
| 70 |
doc = nlp(full_text)
|
|
@@ -82,8 +85,6 @@ def create_custom_entity_viz(data, full_text):
|
|
| 82 |
overlapping = any(s.start < end and start < s.end for s in spans)
|
| 83 |
if not overlapping:
|
| 84 |
span = Span(doc, start, end, label=node["type"])
|
| 85 |
-
|
| 86 |
-
# print(span)
|
| 87 |
spans.append(span)
|
| 88 |
if node["type"] not in colors:
|
| 89 |
colors[node["type"]] = get_random_light_color()
|
|
@@ -101,26 +102,28 @@ def create_custom_entity_viz(data, full_text):
|
|
| 101 |
html = displacy.render(doc, style="span", options=options)
|
| 102 |
return html
|
| 103 |
|
| 104 |
-
|
| 105 |
def create_graph(json_data):
|
| 106 |
G = nx.Graph()
|
| 107 |
|
|
|
|
| 108 |
for node in json_data['nodes']:
|
| 109 |
G.add_node(node['id'], title=f"{node['type']}: {node['detailed_type']}")
|
| 110 |
|
|
|
|
| 111 |
for edge in json_data['edges']:
|
| 112 |
G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label'])
|
| 113 |
|
|
|
|
| 114 |
nt = Network(
|
| 115 |
width="720px",
|
| 116 |
height="600px",
|
| 117 |
directed=True,
|
| 118 |
notebook=False,
|
| 119 |
-
bgcolor="#
|
| 120 |
-
font_color="
|
| 121 |
-
# bgcolor="#FFFFFF",
|
| 122 |
-
# font_color="#111827"
|
| 123 |
)
|
|
|
|
|
|
|
| 124 |
nt.from_nx(G)
|
| 125 |
nt.barnes_hut(
|
| 126 |
gravity=-3000,
|
|
@@ -130,71 +133,141 @@ def create_graph(json_data):
|
|
| 130 |
damping=0.09,
|
| 131 |
overlap=0,
|
| 132 |
)
|
| 133 |
-
|
| 134 |
# Customize edge appearance
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
html = nt.generate_html()
|
| 143 |
html = html.replace("'", '"')
|
| 144 |
|
| 145 |
-
return f"""<iframe style="width:
|
| 146 |
-
allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
|
| 147 |
sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups
|
| 148 |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
| 149 |
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
| 150 |
-
|
| 151 |
|
| 152 |
-
def process_and_visualize(text, model):
|
| 153 |
if not text or not model:
|
| 154 |
-
raise gr.Error("
|
|
|
|
|
|
|
| 155 |
json_data = extract(text, model)
|
|
|
|
|
|
|
| 156 |
entities_viz = create_custom_entity_viz(json_data, text)
|
| 157 |
|
|
|
|
| 158 |
graph_html = create_graph(json_data)
|
| 159 |
-
return graph_html, entities_viz, json_data
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
with gr.Blocks(title="Phi-3 Instruct Graph (by Emergent Methods") as demo:
|
| 164 |
-
gr.Markdown("# Phi-3 Instruct Graph (by Emergent Methods)")
|
| 165 |
-
gr.Markdown("Extract a JSON graph from a text input and visualize it.")
|
| 166 |
-
with gr.Row():
|
| 167 |
-
with gr.Column(scale=1):
|
| 168 |
-
input_model = gr.Dropdown(
|
| 169 |
-
MODEL_LIST, label="Model",
|
| 170 |
-
)
|
| 171 |
-
input_text = gr.TextArea(label="Text", info="The text to be extracted")
|
| 172 |
-
|
| 173 |
-
examples = gr.Examples(
|
| 174 |
-
examples=[
|
| 175 |
-
handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing
|
| 176 |
-
lead singer Steven Tyler's unrecoverable vocal cord injury.
|
| 177 |
-
The decision comes after months of unsuccessful treatment for Tyler's fractured larynx,
|
| 178 |
-
which he suffered in September 2023."""),
|
| 179 |
-
handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual
|
| 180 |
-
court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI)
|
| 181 |
-
in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe,
|
| 182 |
-
pleaded not guilty to the charges."""),
|
| 183 |
-
],
|
| 184 |
-
inputs=input_text
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
submit_button = gr.Button("Extract and Visualize")
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
|
|
|
| 200 |
demo.launch(share=False)
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph
|
|
|
|
| 4 |
import rapidjson
|
|
|
|
| 5 |
from pyvis.network import Network
|
| 6 |
import networkx as nx
|
| 7 |
import spacy
|
| 8 |
from spacy import displacy
|
| 9 |
from spacy.tokens import Span
|
| 10 |
import random
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
TITLE = "🌐 Phi-3 Instruct Graph Explorer"
|
| 15 |
+
SUBTITLE = "✨ Extract and visualize knowledge graphs from any text in multiple languages"
|
| 16 |
+
THEME = gr.themes.Base().set(
|
| 17 |
+
primary_hue="indigo",
|
| 18 |
+
secondary_hue="purple",
|
| 19 |
+
neutral_hue="slate",
|
| 20 |
+
radius_size=gr.themes.sizes.radius_sm,
|
| 21 |
+
shadow_size=gr.themes.sizes.shadow_lg,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Color utilities
|
| 25 |
+
def get_random_light_color():
|
| 26 |
+
r = random.randint(140, 255)
|
| 27 |
+
g = random.randint(140, 255)
|
| 28 |
+
b = random.randint(140, 255)
|
| 29 |
+
return f"#{r:02x}{g:02x}{b:02x}"
|
| 30 |
|
| 31 |
+
# Text preprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def handle_text(text):
|
| 33 |
return " ".join(text.split())
|
| 34 |
|
| 35 |
+
# Main processing functions
|
| 36 |
+
@spaces.GPU
|
| 37 |
+
def extract(text, model):
|
| 38 |
+
try:
|
| 39 |
+
model = Phi3InstructGraph(model=model)
|
| 40 |
+
result = model.extract(text)
|
| 41 |
+
return rapidjson.loads(result)
|
| 42 |
+
except Exception as e:
|
| 43 |
+
raise gr.Error(f"Extraction error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def find_token_indices(doc, substring, text):
|
| 46 |
result = []
|
|
|
|
| 57 |
if token.idx + len(token) == end_index:
|
| 58 |
end_token = token.i + 1
|
| 59 |
|
| 60 |
+
if start_token is not None and end_token is not None:
|
|
|
|
|
|
|
| 61 |
result.append({
|
| 62 |
"start": start_token,
|
| 63 |
"end": end_token
|
|
|
|
| 66 |
# Search for next occurrence
|
| 67 |
start_index = text.find(substring, end_index)
|
| 68 |
|
|
|
|
|
|
|
|
|
|
| 69 |
return result
|
| 70 |
|
|
|
|
| 71 |
def create_custom_entity_viz(data, full_text):
|
| 72 |
nlp = spacy.blank("xx")
|
| 73 |
doc = nlp(full_text)
|
|
|
|
| 85 |
overlapping = any(s.start < end and start < s.end for s in spans)
|
| 86 |
if not overlapping:
|
| 87 |
span = Span(doc, start, end, label=node["type"])
|
|
|
|
|
|
|
| 88 |
spans.append(span)
|
| 89 |
if node["type"] not in colors:
|
| 90 |
colors[node["type"]] = get_random_light_color()
|
|
|
|
| 102 |
html = displacy.render(doc, style="span", options=options)
|
| 103 |
return html
|
| 104 |
|
|
|
|
| 105 |
def create_graph(json_data):
|
| 106 |
G = nx.Graph()
|
| 107 |
|
| 108 |
+
# Add nodes with tooltips
|
| 109 |
for node in json_data['nodes']:
|
| 110 |
G.add_node(node['id'], title=f"{node['type']}: {node['detailed_type']}")
|
| 111 |
|
| 112 |
+
# Add edges with labels
|
| 113 |
for edge in json_data['edges']:
|
| 114 |
G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label'])
|
| 115 |
|
| 116 |
+
# Create network visualization
|
| 117 |
nt = Network(
|
| 118 |
width="720px",
|
| 119 |
height="600px",
|
| 120 |
directed=True,
|
| 121 |
notebook=False,
|
| 122 |
+
bgcolor="#f8fafc",
|
| 123 |
+
font_color="#1e293b"
|
|
|
|
|
|
|
| 124 |
)
|
| 125 |
+
|
| 126 |
+
# Configure network display
|
| 127 |
nt.from_nx(G)
|
| 128 |
nt.barnes_hut(
|
| 129 |
gravity=-3000,
|
|
|
|
| 133 |
damping=0.09,
|
| 134 |
overlap=0,
|
| 135 |
)
|
| 136 |
+
|
| 137 |
# Customize edge appearance
|
| 138 |
+
for edge in nt.edges:
|
| 139 |
+
edge['width'] = 2
|
| 140 |
+
edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}}
|
| 141 |
+
edge['color'] = {'color': '#6366f1', 'highlight': '#4f46e5'}
|
| 142 |
+
edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Arial'}
|
| 143 |
+
|
| 144 |
+
# Customize node appearance
|
| 145 |
+
for node in nt.nodes:
|
| 146 |
+
node['color'] = {'background': '#e0e7ff', 'border': '#6366f1', 'highlight': {'background': '#c7d2fe', 'border': '#4f46e5'}}
|
| 147 |
+
node['font'] = {'size': 14, 'color': '#1e293b'}
|
| 148 |
+
node['shape'] = 'dot'
|
| 149 |
+
node['size'] = 25
|
| 150 |
+
|
| 151 |
+
# Generate HTML with iframe to isolate styles
|
| 152 |
html = nt.generate_html()
|
| 153 |
html = html.replace("'", '"')
|
| 154 |
|
| 155 |
+
return f"""<iframe style="width: 100%; height: 620px; margin: 0 auto; border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);"
|
| 156 |
+
name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
|
| 157 |
sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups
|
| 158 |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
| 159 |
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
|
|
|
| 160 |
|
| 161 |
+
def process_and_visualize(text, model, progress=gr.Progress()):
|
| 162 |
if not text or not model:
|
| 163 |
+
raise gr.Error("⚠️ Both text and model must be provided.")
|
| 164 |
+
|
| 165 |
+
progress(0, desc="Starting extraction...")
|
| 166 |
json_data = extract(text, model)
|
| 167 |
+
|
| 168 |
+
progress(0.5, desc="Creating entity visualization...")
|
| 169 |
entities_viz = create_custom_entity_viz(json_data, text)
|
| 170 |
|
| 171 |
+
progress(0.8, desc="Building knowledge graph...")
|
| 172 |
graph_html = create_graph(json_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
+
node_count = len(json_data["nodes"])
|
| 175 |
+
edge_count = len(json_data["edges"])
|
| 176 |
+
stats = f"📊 Extracted {node_count} entities and {edge_count} relationships"
|
| 177 |
+
|
| 178 |
+
progress(1.0, desc="Complete!")
|
| 179 |
+
return graph_html, entities_viz, json_data, stats
|
| 180 |
+
|
| 181 |
+
# Example texts in different languages
|
| 182 |
+
EXAMPLES = [
|
| 183 |
+
[handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing
|
| 184 |
+
lead singer Steven Tyler's unrecoverable vocal cord injury.
|
| 185 |
+
The decision comes after months of unsuccessful treatment for Tyler's fractured larynx,
|
| 186 |
+
which he suffered in September 2023.""")],
|
| 187 |
+
|
| 188 |
+
[handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual
|
| 189 |
+
court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI)
|
| 190 |
+
in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe,
|
| 191 |
+
pleaded not guilty to the charges.""")],
|
| 192 |
|
| 193 |
+
[handle_text("""세계적인 기술 기업 삼성전자는 새로운 인공지능 기반 스마트폰을 올해 하반기에 출시할 예정이라고 발표했다.
|
| 194 |
+
이 스마트폰은 현재 개발 중인 갤럭시 시리즈의 최신작으로, 강력한 AI 기능과 혁신적인 카메라 시스템을 탑재할 것으로 알려졌다.
|
| 195 |
+
삼성전자의 CEO는 이번 신제품이 스마트폰 시장에 새로운 혁신을 가져올 것이라고 전망했다.""")],
|
| 196 |
+
|
| 197 |
+
[handle_text("""한국 영화 '기생충'은 2020년 아카데미 시상식에서 작품상, 감독상, 각본상, 국제영화상 등 4개 부문을 수상하며 역사를 새로 썼다.
|
| 198 |
+
봉준호 감독이 연출한 이 영화는 한국 영화 최초로 칸 영화제 황금종려상도 수상했으며, 전 세계적으로 엄청난 흥행과
|
| 199 |
+
평단의 호평을 받았다.""")]
|
| 200 |
+
]
|
| 201 |
+
|
| 202 |
+
def create_ui():
|
| 203 |
+
with gr.Blocks(theme=THEME, title=TITLE) as demo:
|
| 204 |
+
# Header
|
| 205 |
+
gr.Markdown(f"# {TITLE}")
|
| 206 |
+
gr.Markdown(f"{SUBTITLE}")
|
| 207 |
+
|
| 208 |
+
with gr.Row():
|
| 209 |
+
gr.Markdown("🌍 **Multilingual Support Available** 🔤")
|
| 210 |
+
|
| 211 |
+
# Main interface
|
| 212 |
+
with gr.Row():
|
| 213 |
+
# Input column
|
| 214 |
+
with gr.Column(scale=1):
|
| 215 |
+
input_model = gr.Dropdown(
|
| 216 |
+
MODEL_LIST,
|
| 217 |
+
label="🤖 Select Model",
|
| 218 |
+
info="Choose a model to process your text",
|
| 219 |
+
value=MODEL_LIST[0] if MODEL_LIST else None
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
input_text = gr.TextArea(
|
| 223 |
+
label="📝 Input Text",
|
| 224 |
+
info="Enter text in any language to extract a knowledge graph",
|
| 225 |
+
placeholder="Enter text here...",
|
| 226 |
+
lines=10
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
with gr.Row():
|
| 230 |
+
submit_button = gr.Button("🚀 Extract & Visualize", variant="primary", scale=2)
|
| 231 |
+
clear_button = gr.Button("🔄 Clear", variant="secondary", scale=1)
|
| 232 |
+
|
| 233 |
+
gr.Examples(
|
| 234 |
+
examples=EXAMPLES,
|
| 235 |
+
inputs=input_text,
|
| 236 |
+
label="📚 Example Texts (English & Korean)"
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
stats_output = gr.Markdown("", label="🔍 Analysis Results")
|
| 240 |
+
|
| 241 |
+
# Output column
|
| 242 |
+
with gr.Column(scale=1):
|
| 243 |
+
with gr.Tab("🧩 Knowledge Graph"):
|
| 244 |
+
output_graph = gr.HTML(label="")
|
| 245 |
+
|
| 246 |
+
with gr.Tab("🏷️ Entities"):
|
| 247 |
+
output_entity_viz = gr.HTML(label="")
|
| 248 |
+
|
| 249 |
+
with gr.Tab("📊 JSON Data"):
|
| 250 |
+
output_json = gr.JSON(label="")
|
| 251 |
+
|
| 252 |
+
# Functionality
|
| 253 |
+
submit_button.click(
|
| 254 |
+
fn=process_and_visualize,
|
| 255 |
+
inputs=[input_text, input_model],
|
| 256 |
+
outputs=[output_graph, output_entity_viz, output_json, stats_output]
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
clear_button.click(
|
| 260 |
+
fn=lambda: [None, None, None, ""],
|
| 261 |
+
inputs=[],
|
| 262 |
+
outputs=[output_graph, output_entity_viz, output_json, stats_output]
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# Footer
|
| 266 |
+
gr.Markdown("---")
|
| 267 |
+
gr.Markdown("📋 **Instructions:** Enter text in any language, select a model, and click 'Extract & Visualize' to generate a knowledge graph.")
|
| 268 |
+
gr.Markdown("🛠️ Powered by Phi-3 Instruct Graph | Created by Emergent Methods")
|
| 269 |
+
|
| 270 |
+
return demo
|
| 271 |
|
| 272 |
+
demo = create_ui()
|
| 273 |
demo.launch(share=False)
|