Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,7 +24,7 @@ import warnings
|
|
| 24 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 25 |
|
| 26 |
# 번역 모델 로드
|
| 27 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 28 |
|
| 29 |
#Load prompts for randomization
|
| 30 |
df = pd.read_csv('prompts.csv', header=None)
|
|
@@ -40,12 +40,12 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 40 |
|
| 41 |
# 공통 FLUX 모델 로드
|
| 42 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 43 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype
|
| 44 |
-
|
| 45 |
|
| 46 |
# LoRA를 위한 설정
|
| 47 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
| 48 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
|
| 49 |
|
| 50 |
# Image-to-Image 파이프라인 설정
|
| 51 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
@@ -56,14 +56,12 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
| 56 |
tokenizer=pipe.tokenizer,
|
| 57 |
text_encoder_2=pipe.text_encoder_2,
|
| 58 |
tokenizer_2=pipe.tokenizer_2,
|
| 59 |
-
torch_dtype=dtype
|
| 60 |
-
|
| 61 |
-
).to(device)
|
| 62 |
|
| 63 |
controlnet = FluxControlNetModel.from_pretrained(
|
| 64 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
|
| 68 |
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
| 69 |
pipe_upscale = FluxControlNetPipeline(
|
|
@@ -74,9 +72,13 @@ pipe_upscale = FluxControlNetPipeline(
|
|
| 74 |
scheduler=pipe.scheduler,
|
| 75 |
safety_checker=pipe.safety_checker,
|
| 76 |
feature_extractor=pipe.feature_extractor,
|
| 77 |
-
controlnet=controlnet
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
|
| 82 |
|
|
|
|
| 24 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 25 |
|
| 26 |
# 번역 모델 로드
|
| 27 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=0 if torch.cuda.is_available() else -1)
|
| 28 |
|
| 29 |
#Load prompts for randomization
|
| 30 |
df = pd.read_csv('prompts.csv', header=None)
|
|
|
|
| 40 |
|
| 41 |
# 공통 FLUX 모델 로드
|
| 42 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 43 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype)
|
| 44 |
+
pipe.to(device) # 여기서 한 번만 device로 이동
|
| 45 |
|
| 46 |
# LoRA를 위한 설정
|
| 47 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
| 48 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype)
|
| 49 |
|
| 50 |
# Image-to-Image 파이프라인 설정
|
| 51 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
|
|
| 56 |
tokenizer=pipe.tokenizer,
|
| 57 |
text_encoder_2=pipe.text_encoder_2,
|
| 58 |
tokenizer_2=pipe.tokenizer_2,
|
| 59 |
+
torch_dtype=dtype
|
| 60 |
+
)
|
|
|
|
| 61 |
|
| 62 |
controlnet = FluxControlNetModel.from_pretrained(
|
| 63 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
| 64 |
+
)
|
|
|
|
| 65 |
|
| 66 |
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
| 67 |
pipe_upscale = FluxControlNetPipeline(
|
|
|
|
| 72 |
scheduler=pipe.scheduler,
|
| 73 |
safety_checker=pipe.safety_checker,
|
| 74 |
feature_extractor=pipe.feature_extractor,
|
| 75 |
+
controlnet=controlnet
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# 모든 파이프라인을 device로 이동
|
| 79 |
+
pipe_i2i.to(device)
|
| 80 |
+
controlnet.to(device)
|
| 81 |
+
pipe_upscale.to(device)
|
| 82 |
|
| 83 |
|
| 84 |
|