Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,6 +20,9 @@ from gradio_imageslider import ImageSlider
|
|
| 20 |
import numpy as np
|
| 21 |
import warnings
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
# 번역 모델 로드
|
| 24 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 25 |
|
|
@@ -34,21 +37,16 @@ with open('loras.json', 'r') as f:
|
|
| 34 |
# Initialize the base model
|
| 35 |
dtype = torch.bfloat16
|
| 36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
-
base_model = "black-forest-labs/FLUX.1-dev"
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
| 43 |
-
repo_type="model",
|
| 44 |
-
ignore_patterns=["*.md", "*..gitattributes"],
|
| 45 |
-
local_dir="FLUX.1-dev",
|
| 46 |
-
token=huggingface_token, # type a new token-id.
|
| 47 |
-
)
|
| 48 |
|
|
|
|
| 49 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 50 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 51 |
-
|
|
|
|
| 52 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
| 53 |
base_model,
|
| 54 |
vae=good_vae,
|
|
@@ -60,14 +58,25 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
| 60 |
torch_dtype=dtype
|
| 61 |
)
|
| 62 |
|
| 63 |
-
#
|
| 64 |
controlnet = FluxControlNetModel.from_pretrained(
|
| 65 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
| 66 |
).to(device)
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
)
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
|
| 72 |
MAX_SEED = 2**32 - 1
|
| 73 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
|
|
|
| 20 |
import numpy as np
|
| 21 |
import warnings
|
| 22 |
|
| 23 |
+
|
| 24 |
+
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 25 |
+
|
| 26 |
# 번역 모델 로드
|
| 27 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 28 |
|
|
|
|
| 37 |
# Initialize the base model
|
| 38 |
dtype = torch.bfloat16
|
| 39 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 40 |
|
| 41 |
+
# 공통 FLUX 모델 로드
|
| 42 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
| 43 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# LoRA를 위한 설정
|
| 46 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 47 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 48 |
+
|
| 49 |
+
# Image-to-Image 파이프라인 설정
|
| 50 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
| 51 |
base_model,
|
| 52 |
vae=good_vae,
|
|
|
|
| 58 |
torch_dtype=dtype
|
| 59 |
)
|
| 60 |
|
| 61 |
+
# Upscale을 위한 ControlNet 설정
|
| 62 |
controlnet = FluxControlNetModel.from_pretrained(
|
| 63 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
| 64 |
).to(device)
|
| 65 |
+
|
| 66 |
+
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
| 67 |
+
pipe_upscale = FluxControlNetPipeline(
|
| 68 |
+
vae=pipe.vae,
|
| 69 |
+
text_encoder=pipe.text_encoder,
|
| 70 |
+
tokenizer=pipe.tokenizer,
|
| 71 |
+
unet=pipe.unet,
|
| 72 |
+
scheduler=pipe.scheduler,
|
| 73 |
+
safety_checker=pipe.safety_checker,
|
| 74 |
+
feature_extractor=pipe.feature_extractor,
|
| 75 |
+
controlnet=controlnet
|
| 76 |
)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
|
| 81 |
MAX_SEED = 2**32 - 1
|
| 82 |
MAX_PIXEL_BUDGET = 1024 * 1024
|