Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import os
|
| 2 |
-
import spaces
|
| 3 |
import gradio as gr
|
| 4 |
import json
|
| 5 |
import logging
|
|
@@ -304,7 +303,6 @@ def remove_custom_lora(selected_indices, current_loras):
|
|
| 304 |
lora_image_2
|
| 305 |
)
|
| 306 |
|
| 307 |
-
@spaces.GPU(duration=75) # 데코레이터 제거가 필요할 수 있음
|
| 308 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
| 309 |
print("Generating image...")
|
| 310 |
pipe.to(device)
|
|
@@ -324,7 +322,6 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
|
| 324 |
):
|
| 325 |
yield img
|
| 326 |
|
| 327 |
-
@spaces.GPU(duration=75) # 데코레이터 제거가 필요할 수 있음
|
| 328 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
| 329 |
pipe_i2i.to(device)
|
| 330 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
@@ -428,7 +425,7 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
| 428 |
|
| 429 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 430 |
|
| 431 |
-
run_lora.zerogpu = True #
|
| 432 |
|
| 433 |
def get_huggingface_safetensors(link):
|
| 434 |
split_link = link.split("/")
|
|
@@ -497,7 +494,8 @@ def process_input(input_image, upscale_factor, **kwargs):
|
|
| 497 |
warnings.warn(
|
| 498 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
| 499 |
)
|
| 500 |
-
gr.Info
|
|
|
|
| 501 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
|
| 502 |
)
|
| 503 |
input_image = input_image.resize(
|
|
@@ -515,7 +513,6 @@ def process_input(input_image, upscale_factor, **kwargs):
|
|
| 515 |
|
| 516 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
| 517 |
|
| 518 |
-
@spaces.GPU(duration=75) # 데코레이터 제거가 필요할 수 있음
|
| 519 |
def infer_upscale(
|
| 520 |
seed,
|
| 521 |
randomize_seed,
|
|
@@ -538,7 +535,8 @@ def infer_upscale(
|
|
| 538 |
|
| 539 |
generator = torch.Generator().manual_seed(seed)
|
| 540 |
|
| 541 |
-
gr.Info
|
|
|
|
| 542 |
image = pipe_controlnet(
|
| 543 |
prompt="",
|
| 544 |
control_image=control_image,
|
|
@@ -551,7 +549,7 @@ def infer_upscale(
|
|
| 551 |
).images[0]
|
| 552 |
|
| 553 |
if was_resized:
|
| 554 |
-
|
| 555 |
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
| 556 |
)
|
| 557 |
|
|
@@ -589,7 +587,7 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
| 589 |
|
| 590 |
loras_state = gr.State(loras)
|
| 591 |
selected_indices = gr.State([])
|
| 592 |
-
|
| 593 |
with gr.Tab("Generate"):
|
| 594 |
with gr.Row():
|
| 595 |
with gr.Column(scale=3):
|
|
@@ -609,16 +607,16 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
| 609 |
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
| 610 |
with gr.Row():
|
| 611 |
remove_button_1 = gr.Button("Remove", size="sm")
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
with gr.Row():
|
| 623 |
with gr.Column():
|
| 624 |
with gr.Group():
|
|
@@ -764,3 +762,4 @@ app.launch()
|
|
| 764 |
|
| 765 |
|
| 766 |
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import json
|
| 4 |
import logging
|
|
|
|
| 303 |
lora_image_2
|
| 304 |
)
|
| 305 |
|
|
|
|
| 306 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
| 307 |
print("Generating image...")
|
| 308 |
pipe.to(device)
|
|
|
|
| 322 |
):
|
| 323 |
yield img
|
| 324 |
|
|
|
|
| 325 |
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
| 326 |
pipe_i2i.to(device)
|
| 327 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
| 425 |
|
| 426 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 427 |
|
| 428 |
+
# run_lora.zerogpu = True # 데코레이터 문제로 제거
|
| 429 |
|
| 430 |
def get_huggingface_safetensors(link):
|
| 431 |
split_link = link.split("/")
|
|
|
|
| 494 |
warnings.warn(
|
| 495 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
| 496 |
)
|
| 497 |
+
# Gradio does not have gr.Info, using print instead
|
| 498 |
+
print(
|
| 499 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
|
| 500 |
)
|
| 501 |
input_image = input_image.resize(
|
|
|
|
| 513 |
|
| 514 |
return input_image.resize((w, h)), w_original, h_original, was_resized
|
| 515 |
|
|
|
|
| 516 |
def infer_upscale(
|
| 517 |
seed,
|
| 518 |
randomize_seed,
|
|
|
|
| 535 |
|
| 536 |
generator = torch.Generator().manual_seed(seed)
|
| 537 |
|
| 538 |
+
# Gradio does not have gr.Info, using print instead
|
| 539 |
+
print("Upscaling image...")
|
| 540 |
image = pipe_controlnet(
|
| 541 |
prompt="",
|
| 542 |
control_image=control_image,
|
|
|
|
| 549 |
).images[0]
|
| 550 |
|
| 551 |
if was_resized:
|
| 552 |
+
print(
|
| 553 |
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
| 554 |
)
|
| 555 |
|
|
|
|
| 587 |
|
| 588 |
loras_state = gr.State(loras)
|
| 589 |
selected_indices = gr.State([])
|
| 590 |
+
|
| 591 |
with gr.Tab("Generate"):
|
| 592 |
with gr.Row():
|
| 593 |
with gr.Column(scale=3):
|
|
|
|
| 607 |
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
| 608 |
with gr.Row():
|
| 609 |
remove_button_1 = gr.Button("Remove", size="sm")
|
| 610 |
+
with gr.Column(scale=8):
|
| 611 |
+
with gr.Row():
|
| 612 |
+
with gr.Column(scale=0, min_width=50):
|
| 613 |
+
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
| 614 |
+
with gr.Column(scale=3, min_width=100):
|
| 615 |
+
selected_info_2 = gr.Markdown("Select a LoRA 2")
|
| 616 |
+
with gr.Column(scale=5, min_width=50):
|
| 617 |
+
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
| 618 |
+
with gr.Row():
|
| 619 |
+
remove_button_2 = gr.Button("Remove", size="sm")
|
| 620 |
with gr.Row():
|
| 621 |
with gr.Column():
|
| 622 |
with gr.Group():
|
|
|
|
| 762 |
|
| 763 |
|
| 764 |
|
| 765 |
+
|