Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,13 +17,15 @@ import pandas as pd
|
|
| 17 |
from transformers import pipeline
|
| 18 |
|
| 19 |
import logging
|
| 20 |
-
import random
|
| 21 |
import warnings
|
| 22 |
import numpy as np
|
| 23 |
from diffusers import FluxControlNetModel
|
| 24 |
from diffusers.pipelines import FluxControlNetPipeline
|
| 25 |
from PIL import Image
|
| 26 |
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# 번역 모델 로드
|
| 29 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
|
@@ -488,9 +490,70 @@ css = '''
|
|
| 488 |
#component-11{align-self: stretch;}
|
| 489 |
footer {visibility: hidden;}
|
| 490 |
'''
|
| 491 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 492 |
@spaces.GPU
|
| 493 |
def upscale(input_image, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
| 494 |
# 입력 이미지 처리
|
| 495 |
input_image, w_original, h_original, was_resized = process_input(input_image, 4)
|
| 496 |
|
|
@@ -500,9 +563,9 @@ def upscale(input_image, progress=gr.Progress(track_tqdm=True)):
|
|
| 500 |
generator = torch.Generator(device=device).manual_seed(random.randint(0, MAX_SEED))
|
| 501 |
|
| 502 |
gr.Info("Upscaling image to 4096x4096...")
|
| 503 |
-
image =
|
| 504 |
prompt="",
|
| 505 |
-
|
| 506 |
controlnet_conditioning_scale=0.6,
|
| 507 |
num_inference_steps=28,
|
| 508 |
guidance_scale=3.5,
|
|
|
|
| 17 |
from transformers import pipeline
|
| 18 |
|
| 19 |
import logging
|
|
|
|
| 20 |
import warnings
|
| 21 |
import numpy as np
|
| 22 |
from diffusers import FluxControlNetModel
|
| 23 |
from diffusers.pipelines import FluxControlNetPipeline
|
| 24 |
from PIL import Image
|
| 25 |
from huggingface_hub import snapshot_download
|
| 26 |
+
from gradio_imageslider import ImageSlider
|
| 27 |
+
|
| 28 |
+
|
| 29 |
|
| 30 |
# 번역 모델 로드
|
| 31 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
|
|
|
| 490 |
#component-11{align-self: stretch;}
|
| 491 |
footer {visibility: hidden;}
|
| 492 |
'''
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 497 |
+
|
| 498 |
+
model_path = snapshot_download(
|
| 499 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
| 500 |
+
repo_type="model",
|
| 501 |
+
ignore_patterns=["*.md", "*..gitattributes"],
|
| 502 |
+
local_dir="FLUX.1-dev",
|
| 503 |
+
token=huggingface_token, # type a new token-id.
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
# Load pipeline
|
| 508 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
| 509 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
| 510 |
+
).to(device)
|
| 511 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
| 512 |
+
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
|
| 513 |
+
)
|
| 514 |
+
pipe.to(device)
|
| 515 |
+
|
| 516 |
+
MAX_SEED = 1000000
|
| 517 |
+
MAX_PIXEL_BUDGET = 1024 * 1024
|
| 518 |
+
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
def process_input(input_image, upscale_factor):
|
| 522 |
+
w, h = input_image.size
|
| 523 |
+
w_original, h_original = w, h
|
| 524 |
+
aspect_ratio = w / h
|
| 525 |
+
|
| 526 |
+
was_resized = False
|
| 527 |
+
|
| 528 |
+
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
| 529 |
+
warnings.warn(
|
| 530 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
| 531 |
+
)
|
| 532 |
+
gr.Info(
|
| 533 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
|
| 534 |
+
)
|
| 535 |
+
input_image = input_image.resize(
|
| 536 |
+
(
|
| 537 |
+
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
| 538 |
+
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
|
| 539 |
+
)
|
| 540 |
+
)
|
| 541 |
+
was_resized = True
|
| 542 |
+
|
| 543 |
+
# resize to multiple of 8
|
| 544 |
+
w, h = input_image.size
|
| 545 |
+
w = w - w % 8
|
| 546 |
+
h = h - h % 8
|
| 547 |
+
|
| 548 |
+
return input_image.resize((w, h)), w_original, h_original, was_resized
|
| 549 |
+
|
| 550 |
+
MAX_PIXEL_BUDGET = 1024 * 1024
|
| 551 |
+
|
| 552 |
@spaces.GPU
|
| 553 |
def upscale(input_image, progress=gr.Progress(track_tqdm=True)):
|
| 554 |
+
if input_image is None:
|
| 555 |
+
raise gr.Error("No image to upscale. Please generate an image first.")
|
| 556 |
+
|
| 557 |
# 입력 이미지 처리
|
| 558 |
input_image, w_original, h_original, was_resized = process_input(input_image, 4)
|
| 559 |
|
|
|
|
| 563 |
generator = torch.Generator(device=device).manual_seed(random.randint(0, MAX_SEED))
|
| 564 |
|
| 565 |
gr.Info("Upscaling image to 4096x4096...")
|
| 566 |
+
image = pipe_controlnet(
|
| 567 |
prompt="",
|
| 568 |
+
image=control_image,
|
| 569 |
controlnet_conditioning_scale=0.6,
|
| 570 |
num_inference_steps=28,
|
| 571 |
guidance_scale=3.5,
|