Spaces:
Runtime error
Runtime error
| import tempfile | |
| import time | |
| from collections.abc import Sequence | |
| from typing import Any, cast | |
| import os | |
| from huggingface_hub import login, hf_hub_download | |
| import gradio as gr | |
| import numpy as np | |
| import pillow_heif | |
| import spaces | |
| import torch | |
| from gradio_image_annotation import image_annotator | |
| from gradio_imageslider import ImageSlider | |
| from PIL import Image | |
| from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml | |
| from refiners.fluxion.utils import no_grad | |
| from refiners.solutions import BoxSegmenter | |
| from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor | |
| from diffusers import FluxPipeline | |
| BoundingBox = tuple[int, int, int, int] | |
| pillow_heif.register_heif_opener() | |
| pillow_heif.register_avif_opener() | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # HF 토큰 설정 | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if HF_TOKEN is None: | |
| raise ValueError("Please set the HF_TOKEN environment variable") | |
| try: | |
| login(token=HF_TOKEN) | |
| except Exception as e: | |
| raise ValueError(f"Failed to login to Hugging Face: {str(e)}") | |
| # 모델 초기화 | |
| segmenter = BoxSegmenter(device="cpu") | |
| segmenter.device = device | |
| segmenter.model = segmenter.model.to(device=segmenter.device) | |
| gd_model_path = "IDEA-Research/grounding-dino-base" | |
| gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) | |
| gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) | |
| gd_model = gd_model.to(device=device) | |
| assert isinstance(gd_model, GroundingDinoForObjectDetection) | |
| # FLUX 파이프라인 초기화 | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=torch.bfloat16, | |
| use_auth_token=HF_TOKEN | |
| ) | |
| pipe.load_lora_weights( | |
| hf_hub_download( | |
| "ByteDance/Hyper-SD", | |
| "Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
| use_auth_token=HF_TOKEN | |
| ) | |
| ) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| pipe.to(device="cuda", dtype=torch.bfloat16) | |
| class timer: | |
| def __init__(self, method_name="timed process"): | |
| self.method = method_name | |
| def __enter__(self): | |
| self.start = time.time() | |
| print(f"{self.method} starts") | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| end = time.time() | |
| print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
| def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: | |
| if not bboxes: | |
| return None | |
| for bbox in bboxes: | |
| assert len(bbox) == 4 | |
| assert all(isinstance(x, int) for x in bbox) | |
| return ( | |
| min(bbox[0] for bbox in bboxes), | |
| min(bbox[1] for bbox in bboxes), | |
| max(bbox[2] for bbox in bboxes), | |
| max(bbox[3] for bbox in bboxes), | |
| ) | |
| def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: | |
| x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) | |
| return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) | |
| def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: | |
| inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) | |
| with no_grad(): | |
| outputs = gd_model(**inputs) | |
| width, height = img.size | |
| results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( | |
| outputs, | |
| inputs["input_ids"], | |
| target_sizes=[(height, width)], | |
| )[0] | |
| assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) | |
| bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) | |
| return bbox_union(bboxes.numpy().tolist()) | |
| def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image: | |
| assert img.size == mask_img.size | |
| img = img.convert("RGB") | |
| mask_img = mask_img.convert("L") | |
| if defringe: | |
| rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 | |
| foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) | |
| img = Image.fromarray((foreground * 255).astype("uint8")) | |
| result = Image.new("RGBA", img.size) | |
| result.paste(img, (0, 0), mask_img) | |
| return result | |
| def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]: | |
| """이미지 크기를 8의 배수로 조정하는 함수""" | |
| new_width = ((width + 7) // 8) * 8 | |
| new_height = ((height + 7) // 8) * 8 | |
| return new_width, new_height | |
| def generate_background(prompt: str, width: int, height: int) -> Image.Image: | |
| """배경 이미지 생성 함수""" | |
| try: | |
| # 이미지 크기를 8의 배수로 조정 | |
| adjusted_width, adjusted_height = adjust_size_to_multiple_of_8(width, height) | |
| with timer("Background generation"): | |
| image = pipe( | |
| prompt=prompt, | |
| width=adjusted_width, | |
| height=adjusted_height, | |
| num_inference_steps=8, | |
| guidance_scale=4.0, | |
| ).images[0] | |
| # 원본 크기로 리사이즈 | |
| if adjusted_width != width or adjusted_height != height: | |
| image = image.resize((width, height), Image.Resampling.LANCZOS) | |
| return image | |
| except Exception as e: | |
| raise gr.Error(f"Background generation failed: {str(e)}") | |
| def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image: | |
| """전경과 배경 합성 함수""" | |
| background = background.resize(foreground.size) | |
| return Image.alpha_composite(background.convert('RGBA'), foreground) | |
| def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]: | |
| time_log: list[str] = [] | |
| if isinstance(prompt, str): | |
| t0 = time.time() | |
| bbox = gd_detect(img, prompt) | |
| time_log.append(f"detect: {time.time() - t0}") | |
| if not bbox: | |
| print(time_log[0]) | |
| raise gr.Error("No object detected") | |
| else: | |
| bbox = prompt | |
| t0 = time.time() | |
| mask = segmenter(img, bbox) | |
| time_log.append(f"segment: {time.time() - t0}") | |
| return mask, bbox, time_log | |
| def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]: | |
| if img.width > 2048 or img.height > 2048: | |
| orig_res = max(img.width, img.height) | |
| img.thumbnail((2048, 2048)) | |
| if isinstance(prompt, tuple): | |
| x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt) | |
| prompt = (x0, y0, x1, y1) | |
| mask, bbox, time_log = _gpu_process(img, prompt) | |
| masked_alpha = apply_mask(img, mask, defringe=True) | |
| if bg_prompt: | |
| try: | |
| background = generate_background(bg_prompt, img.width, img.height) | |
| combined = combine_with_background(masked_alpha, background) | |
| except Exception as e: | |
| raise gr.Error(f"Background processing failed: {str(e)}") | |
| else: | |
| combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) | |
| thresholded = mask.point(lambda p: 255 if p > 10 else 0) | |
| bbox = thresholded.getbbox() | |
| to_dl = masked_alpha.crop(bbox) | |
| temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png") | |
| to_dl.save(temp, format="PNG") | |
| temp.close() | |
| return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True) | |
| def process_bbox(img: Image.Image, box_input: str) -> tuple[list[Image.Image], str]: | |
| try: | |
| if img is None or box_input.strip() == "": | |
| raise gr.Error("Please provide both image and bounding box coordinates") | |
| # Parse box coordinates | |
| try: | |
| coords = eval(box_input) | |
| if not isinstance(coords, list) or len(coords) != 4: | |
| raise ValueError("Invalid box format") | |
| bbox = tuple(int(x) for x in coords) | |
| except: | |
| raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]") | |
| # Process the image | |
| results, download_path = _process(img, bbox) | |
| # Convert results to list for gallery | |
| gallery_images = list(results) | |
| return gallery_images, download_path | |
| except Exception as e: | |
| raise gr.Error(str(e)) | |
| def on_change_bbox(prompts: dict[str, Any] | None): | |
| return gr.update(interactive=prompts is not None) | |
| def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None): | |
| return gr.update(interactive=bool(img and prompt)) | |
| def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None) -> tuple[list[Image.Image], str]: | |
| try: | |
| if img is None or prompt.strip() == "": | |
| raise gr.Error("Please provide both image and prompt") | |
| # Process the image | |
| results, download_path = _process(img, prompt, bg_prompt) | |
| # Convert results to list for gallery | |
| gallery_images = list(results) | |
| return gallery_images, download_path | |
| except Exception as e: | |
| raise gr.Error(str(e)) | |
| # Event handler functions 수정 | |
| def update_process_button(img, prompt): | |
| return gr.update( | |
| interactive=bool(img and prompt), | |
| variant="primary" if bool(img and prompt) else "secondary" | |
| ) | |
| def update_box_button(img, box_input): | |
| try: | |
| if img and box_input: | |
| coords = eval(box_input) | |
| if isinstance(coords, list) and len(coords) == 4: | |
| return gr.update(interactive=True, variant="primary") | |
| return gr.update(interactive=False, variant="secondary") | |
| except: | |
| return gr.update(interactive=False, variant="secondary") | |
| # 맨 앞부분에 CSS 정의 추가 | |
| css = """ | |
| footer {display: none} | |
| .main-title { | |
| text-align: center; | |
| margin: 2em 0; | |
| padding: 1em; | |
| background: #f7f7f7; | |
| border-radius: 10px; | |
| } | |
| .main-title h1 { | |
| color: #2196F3; | |
| font-size: 2.5em; | |
| margin-bottom: 0.5em; | |
| } | |
| .main-title p { | |
| color: #666; | |
| font-size: 1.2em; | |
| } | |
| .container { | |
| max-width: 1200px; | |
| margin: auto; | |
| padding: 20px; | |
| } | |
| .tabs { | |
| margin-top: 1em; | |
| } | |
| .input-group { | |
| background: white; | |
| padding: 1em; | |
| border-radius: 8px; | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
| } | |
| .output-group { | |
| background: white; | |
| padding: 1em; | |
| border-radius: 8px; | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
| } | |
| button.primary { | |
| background: #2196F3; | |
| border: none; | |
| color: white; | |
| padding: 0.5em 1em; | |
| border-radius: 4px; | |
| cursor: pointer; | |
| transition: background 0.3s ease; | |
| } | |
| button.primary:hover { | |
| background: #1976D2; | |
| } | |
| """ | |
| # UI 부분만 수정 | |
| # Main Gradio app | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
| gr.HTML(""" | |
| <div class="main-title"> | |
| <h1>🎨 Image Object Extractor</h1> | |
| <p>Extract objects from images using text prompts or bounding boxes</p> | |
| </div> | |
| """) | |
| with gr.Tabs(selected=0): | |
| # Text-based extraction tab | |
| with gr.TabItem("Extract by Text"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| input_image = gr.Image( | |
| type="pil", | |
| label="Upload Image", | |
| interactive=True | |
| ) | |
| text_prompt = gr.Textbox( | |
| label="Object to Extract", | |
| placeholder="Enter what you want to extract...", | |
| interactive=True | |
| ) | |
| bg_prompt = gr.Textbox( | |
| label="Background Prompt (optional)", | |
| placeholder="Describe the background...", | |
| interactive=True | |
| ) | |
| process_btn = gr.Button( | |
| "Process", | |
| variant="primary", | |
| interactive=False | |
| ) | |
| with gr.Column(scale=1): | |
| output_display = gr.Gallery( | |
| label="Results", | |
| show_download_button=False, | |
| visible=True | |
| ) | |
| download_btn = gr.DownloadButton( | |
| "Download Result", | |
| visible=True | |
| ) | |
| # Box-based extraction tab | |
| with gr.TabItem("Extract by Box"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| box_image = gr.Image( | |
| type="pil", | |
| label="Upload Image for Box", | |
| interactive=True | |
| ) | |
| box_input = gr.Textbox( | |
| label="Bounding Box (xmin, ymin, xmax, ymax)", | |
| placeholder="Enter coordinates as [x1, y1, x2, y2]", | |
| interactive=True | |
| ) | |
| box_btn = gr.Button( | |
| "Extract Selection", | |
| variant="primary", | |
| interactive=False | |
| ) | |
| with gr.Column(scale=1): | |
| box_output = gr.Gallery( | |
| label="Results", | |
| show_download_button=False, | |
| visible=True | |
| ) | |
| box_download = gr.DownloadButton( | |
| "Download Result", | |
| visible=True | |
| ) | |
| # Event bindings | |
| input_image.change( | |
| fn=update_process_button, | |
| inputs=[input_image, text_prompt], | |
| outputs=process_btn, | |
| queue=False | |
| ) | |
| text_prompt.change( | |
| fn=update_process_button, | |
| inputs=[input_image, text_prompt], | |
| outputs=process_btn, | |
| queue=False | |
| ) | |
| process_btn.click( | |
| fn=process_prompt, | |
| inputs=[input_image, text_prompt, bg_prompt], | |
| outputs=[output_display, download_btn], | |
| queue=True | |
| ) | |
| box_image.change( | |
| fn=update_box_button, | |
| inputs=[box_image, box_input], | |
| outputs=box_btn, | |
| queue=False | |
| ) | |
| box_input.change( | |
| fn=update_box_button, | |
| inputs=[box_image, box_input], | |
| outputs=box_btn, | |
| queue=False | |
| ) | |
| box_btn.click( | |
| fn=process_bbox, | |
| inputs=[box_image, box_input], | |
| outputs=[box_output, box_download], | |
| queue=True | |
| ) | |
| demo.queue(max_size=30, api_open=False) | |
| demo.launch() |