Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import time
|
|
| 3 |
from collections.abc import Sequence
|
| 4 |
from typing import Any, cast
|
| 5 |
import os
|
|
|
|
| 6 |
from huggingface_hub import login, hf_hub_download
|
| 7 |
|
| 8 |
import gradio as gr
|
|
@@ -19,35 +20,36 @@ from refiners.solutions import BoxSegmenter
|
|
| 19 |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
| 20 |
from diffusers import FluxPipeline
|
| 21 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 22 |
-
import gc
|
| 23 |
|
|
|
|
|
|
|
| 24 |
def clear_memory():
|
| 25 |
-
"""메모리 정리 함수"""
|
| 26 |
gc.collect()
|
| 27 |
try:
|
| 28 |
if torch.cuda.is_available():
|
| 29 |
with torch.cuda.device(0): # 명시적으로 device 0 사용
|
| 30 |
torch.cuda.empty_cache()
|
| 31 |
-
except:
|
| 32 |
pass
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
# GPU 설정을 try-except로 감싸기
|
| 38 |
if torch.cuda.is_available():
|
| 39 |
try:
|
| 40 |
with torch.cuda.device(0):
|
| 41 |
torch.cuda.empty_cache()
|
| 42 |
torch.backends.cudnn.benchmark = True
|
| 43 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 44 |
-
except:
|
| 45 |
print("Warning: Could not configure CUDA settings")
|
| 46 |
|
| 47 |
-
|
|
|
|
| 48 |
model_name = "Helsinki-NLP/opus-mt-ko-en"
|
| 49 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 50 |
-
|
|
|
|
| 51 |
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
|
| 52 |
|
| 53 |
def translate_to_english(text: str) -> str:
|
|
@@ -67,6 +69,7 @@ BoundingBox = tuple[int, int, int, int]
|
|
| 67 |
pillow_heif.register_heif_opener()
|
| 68 |
pillow_heif.register_avif_opener()
|
| 69 |
|
|
|
|
| 70 |
# HF 토큰 설정
|
| 71 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 72 |
if HF_TOKEN is None:
|
|
@@ -77,7 +80,8 @@ try:
|
|
| 77 |
except Exception as e:
|
| 78 |
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
| 79 |
|
| 80 |
-
|
|
|
|
| 81 |
segmenter = BoxSegmenter(device="cpu")
|
| 82 |
segmenter.device = device
|
| 83 |
segmenter.model = segmenter.model.to(device=segmenter.device)
|
|
@@ -88,15 +92,14 @@ gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_
|
|
| 88 |
gd_model = gd_model.to(device=device)
|
| 89 |
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
| 90 |
|
| 91 |
-
|
|
|
|
| 92 |
pipe = FluxPipeline.from_pretrained(
|
| 93 |
"black-forest-labs/FLUX.1-dev",
|
| 94 |
torch_dtype=torch.float16,
|
| 95 |
use_auth_token=HF_TOKEN
|
| 96 |
)
|
| 97 |
pipe.enable_attention_slicing(slice_size="auto")
|
| 98 |
-
|
| 99 |
-
# LoRA 가중치 로드
|
| 100 |
pipe.load_lora_weights(
|
| 101 |
hf_hub_download(
|
| 102 |
"ByteDance/Hyper-SD",
|
|
@@ -105,14 +108,14 @@ pipe.load_lora_weights(
|
|
| 105 |
)
|
| 106 |
)
|
| 107 |
pipe.fuse_lora(lora_scale=0.125)
|
| 108 |
-
|
| 109 |
-
# GPU 설정을 try-except로 감싸기
|
| 110 |
try:
|
| 111 |
if torch.cuda.is_available():
|
| 112 |
-
pipe = pipe.to("cuda:0") # 명시적으로 cuda:0
|
| 113 |
except Exception as e:
|
| 114 |
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
|
| 115 |
|
|
|
|
|
|
|
| 116 |
class timer:
|
| 117 |
def __init__(self, method_name="timed process"):
|
| 118 |
self.method = method_name
|
|
@@ -123,6 +126,8 @@ class timer:
|
|
| 123 |
end = time.time()
|
| 124 |
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 125 |
|
|
|
|
|
|
|
| 126 |
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
| 127 |
if not bboxes:
|
| 128 |
return None
|
|
@@ -166,15 +171,12 @@ def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -
|
|
| 166 |
result.paste(img, (0, 0), mask_img)
|
| 167 |
return result
|
| 168 |
|
| 169 |
-
|
| 170 |
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
|
| 171 |
-
"""이미지 크기를 8의 배수로 조정하는 함수"""
|
| 172 |
new_width = ((width + 7) // 8) * 8
|
| 173 |
new_height = ((height + 7) // 8) * 8
|
| 174 |
return new_width, new_height
|
| 175 |
|
| 176 |
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
|
| 177 |
-
"""선택된 비율에 따라 이미지 크기 계산"""
|
| 178 |
if aspect_ratio == "1:1":
|
| 179 |
return base_size, base_size
|
| 180 |
elif aspect_ratio == "16:9":
|
|
@@ -185,7 +187,9 @@ def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int,
|
|
| 185 |
return base_size * 4 // 3, base_size
|
| 186 |
return base_size, base_size
|
| 187 |
|
| 188 |
-
|
|
|
|
|
|
|
| 189 |
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
| 190 |
try:
|
| 191 |
width, height = calculate_dimensions(aspect_ratio)
|
|
@@ -197,7 +201,7 @@ def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
|
| 197 |
width = int(width * ratio)
|
| 198 |
height = int(height * ratio)
|
| 199 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
| 200 |
-
|
| 201 |
with timer("Background generation"):
|
| 202 |
try:
|
| 203 |
with torch.inference_mode():
|
|
@@ -211,7 +215,6 @@ def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
|
| 211 |
except Exception as e:
|
| 212 |
print(f"Pipeline error: {str(e)}")
|
| 213 |
return Image.new('RGB', (width, height), 'white')
|
| 214 |
-
|
| 215 |
return image
|
| 216 |
except Exception as e:
|
| 217 |
print(f"Background generation error: {str(e)}")
|
|
@@ -233,7 +236,6 @@ def create_position_grid():
|
|
| 233 |
"""
|
| 234 |
|
| 235 |
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
|
| 236 |
-
"""오브젝트의 위치 계산"""
|
| 237 |
bg_width, bg_height = bg_size
|
| 238 |
obj_width, obj_height = obj_size
|
| 239 |
|
|
@@ -252,28 +254,21 @@ def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size:
|
|
| 252 |
return positions.get(position, positions["bottom-center"])
|
| 253 |
|
| 254 |
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
|
| 255 |
-
"""오브젝트 크기 조정"""
|
| 256 |
width = int(image.width * scale_percent / 100)
|
| 257 |
height = int(image.height * scale_percent / 100)
|
| 258 |
return image.resize((width, height), Image.Resampling.LANCZOS)
|
| 259 |
|
| 260 |
def combine_with_background(foreground: Image.Image, background: Image.Image,
|
| 261 |
-
|
| 262 |
-
"""전경과 배경 합성 함수"""
|
| 263 |
-
# 배경 이미지 준비
|
| 264 |
result = background.convert('RGBA')
|
| 265 |
-
|
| 266 |
-
# 오브젝트 크기 조정
|
| 267 |
scaled_foreground = resize_object(foreground, scale_percent)
|
| 268 |
-
|
| 269 |
-
# 오브젝트 위치 계산
|
| 270 |
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
|
| 271 |
-
|
| 272 |
-
# 합성
|
| 273 |
result.paste(scaled_foreground, (x, y), scaled_foreground)
|
| 274 |
return result
|
| 275 |
|
| 276 |
-
|
|
|
|
|
|
|
| 277 |
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
| 278 |
time_log: list[str] = []
|
| 279 |
try:
|
|
@@ -294,6 +289,8 @@ def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Im
|
|
| 294 |
print(f"GPU process error: {str(e)}")
|
| 295 |
raise
|
| 296 |
|
|
|
|
|
|
|
| 297 |
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
| 298 |
try:
|
| 299 |
# 입력 이미지 크기 제한
|
|
@@ -302,8 +299,7 @@ def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str
|
|
| 302 |
ratio = max_size / max(img.width, img.height)
|
| 303 |
new_size = (int(img.width * ratio), int(img.height * ratio))
|
| 304 |
img = img.resize(new_size, Image.LANCZOS)
|
| 305 |
-
|
| 306 |
-
# CUDA 메모리 관리 수정
|
| 307 |
try:
|
| 308 |
if torch.cuda.is_available():
|
| 309 |
current_device = torch.cuda.current_device()
|
|
@@ -311,19 +307,19 @@ def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str
|
|
| 311 |
torch.cuda.empty_cache()
|
| 312 |
except Exception as e:
|
| 313 |
print(f"CUDA memory management failed: {e}")
|
| 314 |
-
|
| 315 |
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
| 316 |
mask, bbox, time_log = _gpu_process(img, prompt)
|
| 317 |
masked_alpha = apply_mask(img, mask, defringe=True)
|
| 318 |
-
|
| 319 |
if bg_prompt:
|
| 320 |
background = generate_background(bg_prompt, aspect_ratio)
|
| 321 |
combined = background
|
| 322 |
else:
|
| 323 |
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
| 324 |
-
|
| 325 |
clear_memory()
|
| 326 |
-
|
| 327 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
|
| 328 |
combined.save(temp.name)
|
| 329 |
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
|
@@ -335,15 +331,12 @@ def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str
|
|
| 335 |
def on_change_bbox(prompts: dict[str, Any] | None):
|
| 336 |
return gr.update(interactive=prompts is not None)
|
| 337 |
|
| 338 |
-
|
| 339 |
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
| 340 |
return gr.update(interactive=bool(img and prompt))
|
| 341 |
|
| 342 |
-
|
| 343 |
-
|
| 344 |
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
|
| 345 |
-
|
| 346 |
-
|
| 347 |
try:
|
| 348 |
if img is None or prompt.strip() == "":
|
| 349 |
raise gr.Error("Please provide both image and prompt")
|
|
@@ -379,7 +372,7 @@ def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
|
|
| 379 |
raise gr.Error(str(e))
|
| 380 |
finally:
|
| 381 |
clear_memory()
|
| 382 |
-
|
| 383 |
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
|
| 384 |
try:
|
| 385 |
if img is None or box_input.strip() == "":
|
|
@@ -393,15 +386,11 @@ def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.I
|
|
| 393 |
except:
|
| 394 |
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
|
| 395 |
|
| 396 |
-
# Process the image
|
| 397 |
results, _ = _process(img, bbox)
|
| 398 |
-
|
| 399 |
-
# 합성된 이미지와 추출된 이미지만 반환
|
| 400 |
return results[1], results[2]
|
| 401 |
except Exception as e:
|
| 402 |
raise gr.Error(str(e))
|
| 403 |
|
| 404 |
-
# Event handler functions 수정
|
| 405 |
def update_process_button(img, prompt):
|
| 406 |
return gr.update(
|
| 407 |
interactive=bool(img and prompt),
|
|
@@ -418,7 +407,7 @@ def update_box_button(img, box_input):
|
|
| 418 |
except:
|
| 419 |
return gr.update(interactive=False, variant="secondary")
|
| 420 |
|
| 421 |
-
|
| 422 |
# CSS 정의
|
| 423 |
css = """
|
| 424 |
footer {display: none}
|
|
@@ -482,9 +471,7 @@ button.primary:hover {
|
|
| 482 |
}
|
| 483 |
"""
|
| 484 |
|
| 485 |
-
|
| 486 |
-
# UI 구성 부분에서 process_btn을 위로 이동하고 position_grid.click 부분 제거
|
| 487 |
-
|
| 488 |
# UI 구성
|
| 489 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 490 |
gr.HTML("""
|
|
@@ -493,7 +480,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 493 |
<p>AI Integrated Image Creator: Extract objects, generate backgrounds, and adjust ratios and positions to create complete images with AI.</p>
|
| 494 |
</div>
|
| 495 |
""")
|
| 496 |
-
|
| 497 |
with gr.Row():
|
| 498 |
with gr.Column(scale=1):
|
| 499 |
input_image = gr.Image(
|
|
@@ -521,7 +507,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 521 |
visible=True,
|
| 522 |
scale=1
|
| 523 |
)
|
| 524 |
-
|
| 525 |
with gr.Row(visible=False) as object_controls:
|
| 526 |
with gr.Column(scale=1):
|
| 527 |
with gr.Row():
|
|
@@ -545,17 +530,14 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 545 |
step=5,
|
| 546 |
label="Object Size (%)"
|
| 547 |
)
|
| 548 |
-
|
| 549 |
process_btn = gr.Button(
|
| 550 |
"Process",
|
| 551 |
variant="primary",
|
| 552 |
interactive=False
|
| 553 |
)
|
| 554 |
-
|
| 555 |
# 각 버튼에 대한 클릭 이벤트 처리
|
| 556 |
def update_position(new_position):
|
| 557 |
return new_position
|
| 558 |
-
|
| 559 |
btn_top_left.click(fn=lambda: update_position("top-left"), outputs=position)
|
| 560 |
btn_top_center.click(fn=lambda: update_position("top-center"), outputs=position)
|
| 561 |
btn_top_right.click(fn=lambda: update_position("top-right"), outputs=position)
|
|
@@ -565,7 +547,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 565 |
btn_bottom_left.click(fn=lambda: update_position("bottom-left"), outputs=position)
|
| 566 |
btn_bottom_center.click(fn=lambda: update_position("bottom-center"), outputs=position)
|
| 567 |
btn_bottom_right.click(fn=lambda: update_position("bottom-right"), outputs=position)
|
| 568 |
-
|
| 569 |
with gr.Column(scale=1):
|
| 570 |
with gr.Row():
|
| 571 |
combined_image = gr.Image(
|
|
@@ -581,7 +562,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 581 |
type="pil",
|
| 582 |
height=256
|
| 583 |
)
|
| 584 |
-
|
| 585 |
# Event bindings
|
| 586 |
input_image.change(
|
| 587 |
fn=update_process_button,
|
|
@@ -589,29 +569,24 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 589 |
outputs=process_btn,
|
| 590 |
queue=False
|
| 591 |
)
|
| 592 |
-
|
| 593 |
text_prompt.change(
|
| 594 |
fn=update_process_button,
|
| 595 |
inputs=[input_image, text_prompt],
|
| 596 |
outputs=process_btn,
|
| 597 |
queue=False
|
| 598 |
)
|
| 599 |
-
|
| 600 |
def update_controls(bg_prompt):
|
| 601 |
-
"""배경 프롬프트 입력 여부에 따라 컨트롤 표시 업데이트"""
|
| 602 |
is_visible = bool(bg_prompt)
|
| 603 |
return [
|
| 604 |
-
gr.update(visible=is_visible),
|
| 605 |
-
gr.update(visible=is_visible),
|
| 606 |
]
|
| 607 |
-
|
| 608 |
bg_prompt.change(
|
| 609 |
fn=update_controls,
|
| 610 |
inputs=bg_prompt,
|
| 611 |
outputs=[aspect_ratio, object_controls],
|
| 612 |
queue=False
|
| 613 |
)
|
| 614 |
-
|
| 615 |
process_btn.click(
|
| 616 |
fn=process_prompt,
|
| 617 |
inputs=[
|
|
@@ -625,12 +600,23 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
| 625 |
outputs=[combined_image, extracted_image],
|
| 626 |
queue=True
|
| 627 |
)
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
demo.launch(
|
| 632 |
server_name="0.0.0.0",
|
| 633 |
server_port=7860,
|
| 634 |
share=False,
|
| 635 |
-
max_threads=2
|
| 636 |
)
|
|
|
|
| 3 |
from collections.abc import Sequence
|
| 4 |
from typing import Any, cast
|
| 5 |
import os
|
| 6 |
+
import gc
|
| 7 |
from huggingface_hub import login, hf_hub_download
|
| 8 |
|
| 9 |
import gradio as gr
|
|
|
|
| 20 |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
| 21 |
from diffusers import FluxPipeline
|
| 22 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
| 23 |
|
| 24 |
+
#############################################################
|
| 25 |
+
# 메모리 정리 함수
|
| 26 |
def clear_memory():
|
|
|
|
| 27 |
gc.collect()
|
| 28 |
try:
|
| 29 |
if torch.cuda.is_available():
|
| 30 |
with torch.cuda.device(0): # 명시적으로 device 0 사용
|
| 31 |
torch.cuda.empty_cache()
|
| 32 |
+
except Exception as e:
|
| 33 |
pass
|
| 34 |
|
| 35 |
+
#############################################################
|
| 36 |
+
# GPU 설정 (Zero GPU 환경)
|
| 37 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 38 |
if torch.cuda.is_available():
|
| 39 |
try:
|
| 40 |
with torch.cuda.device(0):
|
| 41 |
torch.cuda.empty_cache()
|
| 42 |
torch.backends.cudnn.benchmark = True
|
| 43 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 44 |
+
except Exception as e:
|
| 45 |
print("Warning: Could not configure CUDA settings")
|
| 46 |
|
| 47 |
+
#############################################################
|
| 48 |
+
# 번역 모델 초기화 (CPU에서 동작)
|
| 49 |
model_name = "Helsinki-NLP/opus-mt-ko-en"
|
| 50 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 51 |
+
# 번역 모델은 CPU에 올림
|
| 52 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to("cpu")
|
| 53 |
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
|
| 54 |
|
| 55 |
def translate_to_english(text: str) -> str:
|
|
|
|
| 69 |
pillow_heif.register_heif_opener()
|
| 70 |
pillow_heif.register_avif_opener()
|
| 71 |
|
| 72 |
+
#############################################################
|
| 73 |
# HF 토큰 설정
|
| 74 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 75 |
if HF_TOKEN is None:
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
| 82 |
|
| 83 |
+
#############################################################
|
| 84 |
+
# 객체 분할 모델 초기화
|
| 85 |
segmenter = BoxSegmenter(device="cpu")
|
| 86 |
segmenter.device = device
|
| 87 |
segmenter.model = segmenter.model.to(device=segmenter.device)
|
|
|
|
| 92 |
gd_model = gd_model.to(device=device)
|
| 93 |
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
| 94 |
|
| 95 |
+
#############################################################
|
| 96 |
+
# FLUX 파이프라인 초기화 (Zero GPU용)
|
| 97 |
pipe = FluxPipeline.from_pretrained(
|
| 98 |
"black-forest-labs/FLUX.1-dev",
|
| 99 |
torch_dtype=torch.float16,
|
| 100 |
use_auth_token=HF_TOKEN
|
| 101 |
)
|
| 102 |
pipe.enable_attention_slicing(slice_size="auto")
|
|
|
|
|
|
|
| 103 |
pipe.load_lora_weights(
|
| 104 |
hf_hub_download(
|
| 105 |
"ByteDance/Hyper-SD",
|
|
|
|
| 108 |
)
|
| 109 |
)
|
| 110 |
pipe.fuse_lora(lora_scale=0.125)
|
|
|
|
|
|
|
| 111 |
try:
|
| 112 |
if torch.cuda.is_available():
|
| 113 |
+
pipe = pipe.to("cuda:0") # 명시적으로 cuda:0로 이동
|
| 114 |
except Exception as e:
|
| 115 |
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
|
| 116 |
|
| 117 |
+
#############################################################
|
| 118 |
+
# 타이머 클래스
|
| 119 |
class timer:
|
| 120 |
def __init__(self, method_name="timed process"):
|
| 121 |
self.method = method_name
|
|
|
|
| 126 |
end = time.time()
|
| 127 |
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
| 128 |
|
| 129 |
+
#############################################################
|
| 130 |
+
# 유틸리티 함수들
|
| 131 |
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
| 132 |
if not bboxes:
|
| 133 |
return None
|
|
|
|
| 171 |
result.paste(img, (0, 0), mask_img)
|
| 172 |
return result
|
| 173 |
|
|
|
|
| 174 |
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
|
|
|
|
| 175 |
new_width = ((width + 7) // 8) * 8
|
| 176 |
new_height = ((height + 7) // 8) * 8
|
| 177 |
return new_width, new_height
|
| 178 |
|
| 179 |
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
|
|
|
|
| 180 |
if aspect_ratio == "1:1":
|
| 181 |
return base_size, base_size
|
| 182 |
elif aspect_ratio == "16:9":
|
|
|
|
| 187 |
return base_size * 4 // 3, base_size
|
| 188 |
return base_size, base_size
|
| 189 |
|
| 190 |
+
#############################################################
|
| 191 |
+
# 배경 생성 함수 (Zero GPU에 맞게 수정)
|
| 192 |
+
@spaces.GPU(duration=20)
|
| 193 |
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
|
| 194 |
try:
|
| 195 |
width, height = calculate_dimensions(aspect_ratio)
|
|
|
|
| 201 |
width = int(width * ratio)
|
| 202 |
height = int(height * ratio)
|
| 203 |
width, height = adjust_size_to_multiple_of_8(width, height)
|
| 204 |
+
|
| 205 |
with timer("Background generation"):
|
| 206 |
try:
|
| 207 |
with torch.inference_mode():
|
|
|
|
| 215 |
except Exception as e:
|
| 216 |
print(f"Pipeline error: {str(e)}")
|
| 217 |
return Image.new('RGB', (width, height), 'white')
|
|
|
|
| 218 |
return image
|
| 219 |
except Exception as e:
|
| 220 |
print(f"Background generation error: {str(e)}")
|
|
|
|
| 236 |
"""
|
| 237 |
|
| 238 |
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
|
|
|
|
| 239 |
bg_width, bg_height = bg_size
|
| 240 |
obj_width, obj_height = obj_size
|
| 241 |
|
|
|
|
| 254 |
return positions.get(position, positions["bottom-center"])
|
| 255 |
|
| 256 |
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
|
|
|
|
| 257 |
width = int(image.width * scale_percent / 100)
|
| 258 |
height = int(image.height * scale_percent / 100)
|
| 259 |
return image.resize((width, height), Image.Resampling.LANCZOS)
|
| 260 |
|
| 261 |
def combine_with_background(foreground: Image.Image, background: Image.Image,
|
| 262 |
+
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
|
|
|
|
|
|
|
| 263 |
result = background.convert('RGBA')
|
|
|
|
|
|
|
| 264 |
scaled_foreground = resize_object(foreground, scale_percent)
|
|
|
|
|
|
|
| 265 |
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
|
|
|
|
|
|
|
| 266 |
result.paste(scaled_foreground, (x, y), scaled_foreground)
|
| 267 |
return result
|
| 268 |
|
| 269 |
+
#############################################################
|
| 270 |
+
# GPU 처리 함수 (Zero GPU에 맞게 수정)
|
| 271 |
+
@spaces.GPU(duration=30)
|
| 272 |
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
| 273 |
time_log: list[str] = []
|
| 274 |
try:
|
|
|
|
| 289 |
print(f"GPU process error: {str(e)}")
|
| 290 |
raise
|
| 291 |
|
| 292 |
+
#############################################################
|
| 293 |
+
# 전체 처리 함수
|
| 294 |
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
| 295 |
try:
|
| 296 |
# 입력 이미지 크기 제한
|
|
|
|
| 299 |
ratio = max_size / max(img.width, img.height)
|
| 300 |
new_size = (int(img.width * ratio), int(img.height * ratio))
|
| 301 |
img = img.resize(new_size, Image.LANCZOS)
|
| 302 |
+
|
|
|
|
| 303 |
try:
|
| 304 |
if torch.cuda.is_available():
|
| 305 |
current_device = torch.cuda.current_device()
|
|
|
|
| 307 |
torch.cuda.empty_cache()
|
| 308 |
except Exception as e:
|
| 309 |
print(f"CUDA memory management failed: {e}")
|
| 310 |
+
|
| 311 |
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
| 312 |
mask, bbox, time_log = _gpu_process(img, prompt)
|
| 313 |
masked_alpha = apply_mask(img, mask, defringe=True)
|
| 314 |
+
|
| 315 |
if bg_prompt:
|
| 316 |
background = generate_background(bg_prompt, aspect_ratio)
|
| 317 |
combined = background
|
| 318 |
else:
|
| 319 |
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
| 320 |
+
|
| 321 |
clear_memory()
|
| 322 |
+
|
| 323 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
|
| 324 |
combined.save(temp.name)
|
| 325 |
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
|
|
|
| 331 |
def on_change_bbox(prompts: dict[str, Any] | None):
|
| 332 |
return gr.update(interactive=prompts is not None)
|
| 333 |
|
|
|
|
| 334 |
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
| 335 |
return gr.update(interactive=bool(img and prompt))
|
| 336 |
|
|
|
|
|
|
|
| 337 |
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
|
| 338 |
+
aspect_ratio: str = "1:1", position: str = "bottom-center",
|
| 339 |
+
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
|
| 340 |
try:
|
| 341 |
if img is None or prompt.strip() == "":
|
| 342 |
raise gr.Error("Please provide both image and prompt")
|
|
|
|
| 372 |
raise gr.Error(str(e))
|
| 373 |
finally:
|
| 374 |
clear_memory()
|
| 375 |
+
|
| 376 |
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
|
| 377 |
try:
|
| 378 |
if img is None or box_input.strip() == "":
|
|
|
|
| 386 |
except:
|
| 387 |
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
|
| 388 |
|
|
|
|
| 389 |
results, _ = _process(img, bbox)
|
|
|
|
|
|
|
| 390 |
return results[1], results[2]
|
| 391 |
except Exception as e:
|
| 392 |
raise gr.Error(str(e))
|
| 393 |
|
|
|
|
| 394 |
def update_process_button(img, prompt):
|
| 395 |
return gr.update(
|
| 396 |
interactive=bool(img and prompt),
|
|
|
|
| 407 |
except:
|
| 408 |
return gr.update(interactive=False, variant="secondary")
|
| 409 |
|
| 410 |
+
#############################################################
|
| 411 |
# CSS 정의
|
| 412 |
css = """
|
| 413 |
footer {display: none}
|
|
|
|
| 471 |
}
|
| 472 |
"""
|
| 473 |
|
| 474 |
+
#############################################################
|
|
|
|
|
|
|
| 475 |
# UI 구성
|
| 476 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 477 |
gr.HTML("""
|
|
|
|
| 480 |
<p>AI Integrated Image Creator: Extract objects, generate backgrounds, and adjust ratios and positions to create complete images with AI.</p>
|
| 481 |
</div>
|
| 482 |
""")
|
|
|
|
| 483 |
with gr.Row():
|
| 484 |
with gr.Column(scale=1):
|
| 485 |
input_image = gr.Image(
|
|
|
|
| 507 |
visible=True,
|
| 508 |
scale=1
|
| 509 |
)
|
|
|
|
| 510 |
with gr.Row(visible=False) as object_controls:
|
| 511 |
with gr.Column(scale=1):
|
| 512 |
with gr.Row():
|
|
|
|
| 530 |
step=5,
|
| 531 |
label="Object Size (%)"
|
| 532 |
)
|
|
|
|
| 533 |
process_btn = gr.Button(
|
| 534 |
"Process",
|
| 535 |
variant="primary",
|
| 536 |
interactive=False
|
| 537 |
)
|
|
|
|
| 538 |
# 각 버튼에 대한 클릭 이벤트 처리
|
| 539 |
def update_position(new_position):
|
| 540 |
return new_position
|
|
|
|
| 541 |
btn_top_left.click(fn=lambda: update_position("top-left"), outputs=position)
|
| 542 |
btn_top_center.click(fn=lambda: update_position("top-center"), outputs=position)
|
| 543 |
btn_top_right.click(fn=lambda: update_position("top-right"), outputs=position)
|
|
|
|
| 547 |
btn_bottom_left.click(fn=lambda: update_position("bottom-left"), outputs=position)
|
| 548 |
btn_bottom_center.click(fn=lambda: update_position("bottom-center"), outputs=position)
|
| 549 |
btn_bottom_right.click(fn=lambda: update_position("bottom-right"), outputs=position)
|
|
|
|
| 550 |
with gr.Column(scale=1):
|
| 551 |
with gr.Row():
|
| 552 |
combined_image = gr.Image(
|
|
|
|
| 562 |
type="pil",
|
| 563 |
height=256
|
| 564 |
)
|
|
|
|
| 565 |
# Event bindings
|
| 566 |
input_image.change(
|
| 567 |
fn=update_process_button,
|
|
|
|
| 569 |
outputs=process_btn,
|
| 570 |
queue=False
|
| 571 |
)
|
|
|
|
| 572 |
text_prompt.change(
|
| 573 |
fn=update_process_button,
|
| 574 |
inputs=[input_image, text_prompt],
|
| 575 |
outputs=process_btn,
|
| 576 |
queue=False
|
| 577 |
)
|
|
|
|
| 578 |
def update_controls(bg_prompt):
|
|
|
|
| 579 |
is_visible = bool(bg_prompt)
|
| 580 |
return [
|
| 581 |
+
gr.update(visible=is_visible),
|
| 582 |
+
gr.update(visible=is_visible),
|
| 583 |
]
|
|
|
|
| 584 |
bg_prompt.change(
|
| 585 |
fn=update_controls,
|
| 586 |
inputs=bg_prompt,
|
| 587 |
outputs=[aspect_ratio, object_controls],
|
| 588 |
queue=False
|
| 589 |
)
|
|
|
|
| 590 |
process_btn.click(
|
| 591 |
fn=process_prompt,
|
| 592 |
inputs=[
|
|
|
|
| 600 |
outputs=[combined_image, extracted_image],
|
| 601 |
queue=True
|
| 602 |
)
|
| 603 |
+
# 예제 섹션 추가
|
| 604 |
+
with gr.Accordion("Show Example", open=True):
|
| 605 |
+
gr.Markdown("### Example")
|
| 606 |
+
with gr.Row():
|
| 607 |
+
with gr.Column():
|
| 608 |
+
gr.Markdown("**Upload Image(aa1.png)**")
|
| 609 |
+
gr.Image(value="aa1.png", label="Upload")
|
| 610 |
+
with gr.Column():
|
| 611 |
+
gr.Markdown("**Cut Object (aa2.png)**<br>(Prompt: 'text')", elem_classes="center")
|
| 612 |
+
gr.Image(value="aa2.png", label="Object")
|
| 613 |
+
with gr.Column():
|
| 614 |
+
gr.Markdown("**Generated Image (aa3.png)**<br>(Background Prompt: 'alps mountain')", elem_classes="center")
|
| 615 |
+
gr.Image(value="aa3.png", label="Output")
|
| 616 |
+
demo.queue(max_size=5)
|
| 617 |
demo.launch(
|
| 618 |
server_name="0.0.0.0",
|
| 619 |
server_port=7860,
|
| 620 |
share=False,
|
| 621 |
+
max_threads=2
|
| 622 |
)
|