Spaces:
Running
on
Zero
Running
on
Zero
Delete app-backup-60s.py
Browse files- app-backup-60s.py +0 -724
app-backup-60s.py
DELETED
|
@@ -1,724 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
os.environ['HF_HOME'] = os.path.abspath(
|
| 4 |
-
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
| 5 |
-
)
|
| 6 |
-
|
| 7 |
-
import gradio as gr
|
| 8 |
-
import torch
|
| 9 |
-
import traceback
|
| 10 |
-
import einops
|
| 11 |
-
import safetensors.torch as sf
|
| 12 |
-
import numpy as np
|
| 13 |
-
import math
|
| 14 |
-
import spaces
|
| 15 |
-
|
| 16 |
-
from PIL import Image
|
| 17 |
-
from diffusers import AutoencoderKLHunyuanVideo
|
| 18 |
-
from transformers import (
|
| 19 |
-
LlamaModel, CLIPTextModel,
|
| 20 |
-
LlamaTokenizerFast, CLIPTokenizer
|
| 21 |
-
)
|
| 22 |
-
from diffusers_helper.hunyuan import (
|
| 23 |
-
encode_prompt_conds, vae_decode,
|
| 24 |
-
vae_encode, vae_decode_fake
|
| 25 |
-
)
|
| 26 |
-
from diffusers_helper.utils import (
|
| 27 |
-
save_bcthw_as_mp4, crop_or_pad_yield_mask,
|
| 28 |
-
soft_append_bcthw, resize_and_center_crop,
|
| 29 |
-
state_dict_weighted_merge, state_dict_offset_merge,
|
| 30 |
-
generate_timestamp
|
| 31 |
-
)
|
| 32 |
-
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
| 33 |
-
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
| 34 |
-
from diffusers_helper.memory import (
|
| 35 |
-
cpu, gpu,
|
| 36 |
-
get_cuda_free_memory_gb,
|
| 37 |
-
move_model_to_device_with_memory_preservation,
|
| 38 |
-
offload_model_from_device_for_memory_preservation,
|
| 39 |
-
fake_diffusers_current_device,
|
| 40 |
-
DynamicSwapInstaller,
|
| 41 |
-
unload_complete_models,
|
| 42 |
-
load_model_as_complete
|
| 43 |
-
)
|
| 44 |
-
from diffusers_helper.thread_utils import AsyncStream, async_run
|
| 45 |
-
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
| 46 |
-
from transformers import SiglipImageProcessor, SiglipVisionModel
|
| 47 |
-
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
| 48 |
-
from diffusers_helper.bucket_tools import find_nearest_bucket
|
| 49 |
-
|
| 50 |
-
# Check GPU memory
|
| 51 |
-
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
| 52 |
-
high_vram = free_mem_gb > 60
|
| 53 |
-
|
| 54 |
-
print(f'Free VRAM {free_mem_gb} GB')
|
| 55 |
-
print(f'High-VRAM Mode: {high_vram}')
|
| 56 |
-
|
| 57 |
-
# Load models
|
| 58 |
-
text_encoder = LlamaModel.from_pretrained(
|
| 59 |
-
"hunyuanvideo-community/HunyuanVideo",
|
| 60 |
-
subfolder='text_encoder',
|
| 61 |
-
torch_dtype=torch.float16
|
| 62 |
-
).cpu()
|
| 63 |
-
text_encoder_2 = CLIPTextModel.from_pretrained(
|
| 64 |
-
"hunyuanvideo-community/HunyuanVideo",
|
| 65 |
-
subfolder='text_encoder_2',
|
| 66 |
-
torch_dtype=torch.float16
|
| 67 |
-
).cpu()
|
| 68 |
-
tokenizer = LlamaTokenizerFast.from_pretrained(
|
| 69 |
-
"hunyuanvideo-community/HunyuanVideo",
|
| 70 |
-
subfolder='tokenizer'
|
| 71 |
-
)
|
| 72 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
| 73 |
-
"hunyuanvideo-community/HunyuanVideo",
|
| 74 |
-
subfolder='tokenizer_2'
|
| 75 |
-
)
|
| 76 |
-
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
| 77 |
-
"hunyuanvideo-community/HunyuanVideo",
|
| 78 |
-
subfolder='vae',
|
| 79 |
-
torch_dtype=torch.float16
|
| 80 |
-
).cpu()
|
| 81 |
-
|
| 82 |
-
feature_extractor = SiglipImageProcessor.from_pretrained(
|
| 83 |
-
"lllyasviel/flux_redux_bfl",
|
| 84 |
-
subfolder='feature_extractor'
|
| 85 |
-
)
|
| 86 |
-
image_encoder = SiglipVisionModel.from_pretrained(
|
| 87 |
-
"lllyasviel/flux_redux_bfl",
|
| 88 |
-
subfolder='image_encoder',
|
| 89 |
-
torch_dtype=torch.float16
|
| 90 |
-
).cpu()
|
| 91 |
-
|
| 92 |
-
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
| 93 |
-
'lllyasviel/FramePack_F1_I2V_HY_20250503',
|
| 94 |
-
torch_dtype=torch.bfloat16
|
| 95 |
-
).cpu()
|
| 96 |
-
|
| 97 |
-
# Evaluation mode
|
| 98 |
-
vae.eval()
|
| 99 |
-
text_encoder.eval()
|
| 100 |
-
text_encoder_2.eval()
|
| 101 |
-
image_encoder.eval()
|
| 102 |
-
transformer.eval()
|
| 103 |
-
|
| 104 |
-
# Slicing/Tiling for low VRAM
|
| 105 |
-
if not high_vram:
|
| 106 |
-
vae.enable_slicing()
|
| 107 |
-
vae.enable_tiling()
|
| 108 |
-
|
| 109 |
-
transformer.high_quality_fp32_output_for_inference = True
|
| 110 |
-
print('transformer.high_quality_fp32_output_for_inference = True')
|
| 111 |
-
|
| 112 |
-
# Move to correct dtype
|
| 113 |
-
transformer.to(dtype=torch.bfloat16)
|
| 114 |
-
vae.to(dtype=torch.float16)
|
| 115 |
-
image_encoder.to(dtype=torch.float16)
|
| 116 |
-
text_encoder.to(dtype=torch.float16)
|
| 117 |
-
text_encoder_2.to(dtype=torch.float16)
|
| 118 |
-
|
| 119 |
-
# No gradient
|
| 120 |
-
vae.requires_grad_(False)
|
| 121 |
-
text_encoder.requires_grad_(False)
|
| 122 |
-
text_encoder_2.requires_grad_(False)
|
| 123 |
-
image_encoder.requires_grad_(False)
|
| 124 |
-
transformer.requires_grad_(False)
|
| 125 |
-
|
| 126 |
-
# DynamicSwap if low VRAM
|
| 127 |
-
if not high_vram:
|
| 128 |
-
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
| 129 |
-
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
| 130 |
-
else:
|
| 131 |
-
text_encoder.to(gpu)
|
| 132 |
-
text_encoder_2.to(gpu)
|
| 133 |
-
image_encoder.to(gpu)
|
| 134 |
-
vae.to(gpu)
|
| 135 |
-
transformer.to(gpu)
|
| 136 |
-
|
| 137 |
-
stream = AsyncStream()
|
| 138 |
-
|
| 139 |
-
outputs_folder = './outputs/'
|
| 140 |
-
os.makedirs(outputs_folder, exist_ok=True)
|
| 141 |
-
|
| 142 |
-
examples = [
|
| 143 |
-
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
|
| 144 |
-
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
|
| 145 |
-
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
|
| 146 |
-
]
|
| 147 |
-
|
| 148 |
-
# Example generation (optional)
|
| 149 |
-
def generate_examples(input_image, prompt):
|
| 150 |
-
t2v=False
|
| 151 |
-
n_prompt=""
|
| 152 |
-
seed=31337
|
| 153 |
-
total_second_length=60
|
| 154 |
-
latent_window_size=9
|
| 155 |
-
steps=25
|
| 156 |
-
cfg=1.0
|
| 157 |
-
gs=10.0
|
| 158 |
-
rs=0.0
|
| 159 |
-
gpu_memory_preservation=6
|
| 160 |
-
use_teacache=True
|
| 161 |
-
mp4_crf=16
|
| 162 |
-
|
| 163 |
-
global stream
|
| 164 |
-
|
| 165 |
-
if t2v:
|
| 166 |
-
default_height, default_width = 640, 640
|
| 167 |
-
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
| 168 |
-
print("No input image provided. Using a blank white image.")
|
| 169 |
-
|
| 170 |
-
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
| 171 |
-
|
| 172 |
-
stream = AsyncStream()
|
| 173 |
-
|
| 174 |
-
async_run(
|
| 175 |
-
worker, input_image, prompt, n_prompt, seed,
|
| 176 |
-
total_second_length, latent_window_size, steps,
|
| 177 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
output_filename = None
|
| 181 |
-
|
| 182 |
-
while True:
|
| 183 |
-
flag, data = stream.output_queue.next()
|
| 184 |
-
|
| 185 |
-
if flag == 'file':
|
| 186 |
-
output_filename = data
|
| 187 |
-
yield (
|
| 188 |
-
output_filename,
|
| 189 |
-
gr.update(),
|
| 190 |
-
gr.update(),
|
| 191 |
-
gr.update(),
|
| 192 |
-
gr.update(interactive=False),
|
| 193 |
-
gr.update(interactive=True)
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
if flag == 'progress':
|
| 197 |
-
preview, desc, html = data
|
| 198 |
-
yield (
|
| 199 |
-
gr.update(),
|
| 200 |
-
gr.update(visible=True, value=preview),
|
| 201 |
-
desc,
|
| 202 |
-
html,
|
| 203 |
-
gr.update(interactive=False),
|
| 204 |
-
gr.update(interactive=True)
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
if flag == 'end':
|
| 208 |
-
yield (
|
| 209 |
-
output_filename,
|
| 210 |
-
gr.update(visible=False),
|
| 211 |
-
gr.update(),
|
| 212 |
-
'',
|
| 213 |
-
gr.update(interactive=True),
|
| 214 |
-
gr.update(interactive=False)
|
| 215 |
-
)
|
| 216 |
-
break
|
| 217 |
-
|
| 218 |
-
@torch.no_grad()
|
| 219 |
-
def worker(
|
| 220 |
-
input_image, prompt, n_prompt, seed,
|
| 221 |
-
total_second_length, latent_window_size, steps,
|
| 222 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
| 223 |
-
):
|
| 224 |
-
# Calculate total sections
|
| 225 |
-
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
| 226 |
-
total_latent_sections = int(max(round(total_latent_sections), 1))
|
| 227 |
-
|
| 228 |
-
job_id = generate_timestamp()
|
| 229 |
-
|
| 230 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
| 231 |
-
|
| 232 |
-
try:
|
| 233 |
-
# Unload if VRAM is low
|
| 234 |
-
if not high_vram:
|
| 235 |
-
unload_complete_models(
|
| 236 |
-
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
| 237 |
-
)
|
| 238 |
-
|
| 239 |
-
# Text encoding
|
| 240 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
| 241 |
-
|
| 242 |
-
if not high_vram:
|
| 243 |
-
fake_diffusers_current_device(text_encoder, gpu)
|
| 244 |
-
load_model_as_complete(text_encoder_2, target_device=gpu)
|
| 245 |
-
|
| 246 |
-
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
| 247 |
-
|
| 248 |
-
if cfg == 1:
|
| 249 |
-
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
| 250 |
-
else:
|
| 251 |
-
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
| 252 |
-
|
| 253 |
-
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
| 254 |
-
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
| 255 |
-
|
| 256 |
-
# Process image
|
| 257 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
| 258 |
-
|
| 259 |
-
H, W, C = input_image.shape
|
| 260 |
-
height, width = find_nearest_bucket(H, W, resolution=640)
|
| 261 |
-
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
| 262 |
-
|
| 263 |
-
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
| 264 |
-
|
| 265 |
-
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
| 266 |
-
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
| 267 |
-
|
| 268 |
-
# VAE encoding
|
| 269 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
| 270 |
-
|
| 271 |
-
if not high_vram:
|
| 272 |
-
load_model_as_complete(vae, target_device=gpu)
|
| 273 |
-
start_latent = vae_encode(input_image_pt, vae)
|
| 274 |
-
|
| 275 |
-
# CLIP Vision
|
| 276 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
| 277 |
-
|
| 278 |
-
if not high_vram:
|
| 279 |
-
load_model_as_complete(image_encoder, target_device=gpu)
|
| 280 |
-
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
| 281 |
-
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
| 282 |
-
|
| 283 |
-
# Convert dtype
|
| 284 |
-
llama_vec = llama_vec.to(transformer.dtype)
|
| 285 |
-
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
| 286 |
-
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
| 287 |
-
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
| 288 |
-
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
| 289 |
-
|
| 290 |
-
# Start sampling
|
| 291 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
| 292 |
-
|
| 293 |
-
rnd = torch.Generator("cpu").manual_seed(seed)
|
| 294 |
-
|
| 295 |
-
history_latents = torch.zeros(
|
| 296 |
-
size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
|
| 297 |
-
dtype=torch.float32
|
| 298 |
-
).cpu()
|
| 299 |
-
history_pixels = None
|
| 300 |
-
|
| 301 |
-
# Add start_latent
|
| 302 |
-
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
| 303 |
-
total_generated_latent_frames = 1
|
| 304 |
-
|
| 305 |
-
for section_index in range(total_latent_sections):
|
| 306 |
-
if stream.input_queue.top() == 'end':
|
| 307 |
-
stream.output_queue.push(('end', None))
|
| 308 |
-
return
|
| 309 |
-
|
| 310 |
-
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
|
| 311 |
-
|
| 312 |
-
if not high_vram:
|
| 313 |
-
unload_complete_models()
|
| 314 |
-
move_model_to_device_with_memory_preservation(
|
| 315 |
-
transformer, target_device=gpu,
|
| 316 |
-
preserved_memory_gb=gpu_memory_preservation
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
if use_teacache:
|
| 320 |
-
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
| 321 |
-
else:
|
| 322 |
-
transformer.initialize_teacache(enable_teacache=False)
|
| 323 |
-
|
| 324 |
-
def callback(d):
|
| 325 |
-
preview = d['denoised']
|
| 326 |
-
preview = vae_decode_fake(preview)
|
| 327 |
-
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 328 |
-
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
| 329 |
-
|
| 330 |
-
if stream.input_queue.top() == 'end':
|
| 331 |
-
stream.output_queue.push(('end', None))
|
| 332 |
-
raise KeyboardInterrupt('User ends the task.')
|
| 333 |
-
|
| 334 |
-
current_step = d['i'] + 1
|
| 335 |
-
percentage = int(100.0 * current_step / steps)
|
| 336 |
-
hint = f'Sampling {current_step}/{steps}'
|
| 337 |
-
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}'
|
| 338 |
-
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
| 339 |
-
return
|
| 340 |
-
|
| 341 |
-
indices = torch.arange(
|
| 342 |
-
0, sum([1, 16, 2, 1, latent_window_size])
|
| 343 |
-
).unsqueeze(0)
|
| 344 |
-
(
|
| 345 |
-
clean_latent_indices_start,
|
| 346 |
-
clean_latent_4x_indices,
|
| 347 |
-
clean_latent_2x_indices,
|
| 348 |
-
clean_latent_1x_indices,
|
| 349 |
-
latent_indices
|
| 350 |
-
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
| 351 |
-
|
| 352 |
-
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
| 353 |
-
|
| 354 |
-
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
|
| 355 |
-
:, :, -sum([16, 2, 1]):, :, :
|
| 356 |
-
].split([16, 2, 1], dim=2)
|
| 357 |
-
|
| 358 |
-
clean_latents = torch.cat(
|
| 359 |
-
[start_latent.to(history_latents), clean_latents_1x],
|
| 360 |
-
dim=2
|
| 361 |
-
)
|
| 362 |
-
|
| 363 |
-
generated_latents = sample_hunyuan(
|
| 364 |
-
transformer=transformer,
|
| 365 |
-
sampler='unipc',
|
| 366 |
-
width=width,
|
| 367 |
-
height=height,
|
| 368 |
-
frames=latent_window_size * 4 - 3,
|
| 369 |
-
real_guidance_scale=cfg,
|
| 370 |
-
distilled_guidance_scale=gs,
|
| 371 |
-
guidance_rescale=rs,
|
| 372 |
-
num_inference_steps=steps,
|
| 373 |
-
generator=rnd,
|
| 374 |
-
prompt_embeds=llama_vec,
|
| 375 |
-
prompt_embeds_mask=llama_attention_mask,
|
| 376 |
-
prompt_poolers=clip_l_pooler,
|
| 377 |
-
negative_prompt_embeds=llama_vec_n,
|
| 378 |
-
negative_prompt_embeds_mask=llama_attention_mask_n,
|
| 379 |
-
negative_prompt_poolers=clip_l_pooler_n,
|
| 380 |
-
device=gpu,
|
| 381 |
-
dtype=torch.bfloat16,
|
| 382 |
-
image_embeddings=image_encoder_last_hidden_state,
|
| 383 |
-
latent_indices=latent_indices,
|
| 384 |
-
clean_latents=clean_latents,
|
| 385 |
-
clean_latent_indices=clean_latent_indices,
|
| 386 |
-
clean_latents_2x=clean_latents_2x,
|
| 387 |
-
clean_latent_2x_indices=clean_latent_2x_indices,
|
| 388 |
-
clean_latents_4x=clean_latents_4x,
|
| 389 |
-
clean_latent_4x_indices=clean_latent_4x_indices,
|
| 390 |
-
callback=callback,
|
| 391 |
-
)
|
| 392 |
-
|
| 393 |
-
total_generated_latent_frames += int(generated_latents.shape[2])
|
| 394 |
-
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
| 395 |
-
|
| 396 |
-
if not high_vram:
|
| 397 |
-
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
| 398 |
-
load_model_as_complete(vae, target_device=gpu)
|
| 399 |
-
|
| 400 |
-
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
| 401 |
-
|
| 402 |
-
if history_pixels is None:
|
| 403 |
-
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
| 404 |
-
else:
|
| 405 |
-
section_latent_frames = latent_window_size * 2
|
| 406 |
-
overlapped_frames = latent_window_size * 4 - 3
|
| 407 |
-
|
| 408 |
-
current_pixels = vae_decode(
|
| 409 |
-
real_history_latents[:, :, -section_latent_frames:], vae
|
| 410 |
-
).cpu()
|
| 411 |
-
history_pixels = soft_append_bcthw(
|
| 412 |
-
history_pixels, current_pixels, overlapped_frames
|
| 413 |
-
)
|
| 414 |
-
|
| 415 |
-
if not high_vram:
|
| 416 |
-
unload_complete_models()
|
| 417 |
-
|
| 418 |
-
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
| 419 |
-
|
| 420 |
-
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
| 421 |
-
|
| 422 |
-
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
| 423 |
-
|
| 424 |
-
stream.output_queue.push(('file', output_filename))
|
| 425 |
-
|
| 426 |
-
except:
|
| 427 |
-
traceback.print_exc()
|
| 428 |
-
if not high_vram:
|
| 429 |
-
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
| 430 |
-
|
| 431 |
-
stream.output_queue.push(('end', None))
|
| 432 |
-
return
|
| 433 |
-
|
| 434 |
-
def get_duration(
|
| 435 |
-
input_image, prompt, t2v, n_prompt,
|
| 436 |
-
seed, total_second_length, latent_window_size,
|
| 437 |
-
steps, cfg, gs, rs, gpu_memory_preservation,
|
| 438 |
-
use_teacache, mp4_crf
|
| 439 |
-
):
|
| 440 |
-
return total_second_length * 60
|
| 441 |
-
|
| 442 |
-
@spaces.GPU(duration=get_duration)
|
| 443 |
-
def process(
|
| 444 |
-
input_image, prompt, t2v=False, n_prompt="", seed=31337,
|
| 445 |
-
total_second_length=60, latent_window_size=9, steps=25,
|
| 446 |
-
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6,
|
| 447 |
-
use_teacache=True, mp4_crf=16
|
| 448 |
-
):
|
| 449 |
-
global stream
|
| 450 |
-
if t2v:
|
| 451 |
-
default_height, default_width = 640, 640
|
| 452 |
-
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
| 453 |
-
print("No input image provided. Using a blank white image.")
|
| 454 |
-
else:
|
| 455 |
-
composite_rgba_uint8 = input_image["composite"]
|
| 456 |
-
|
| 457 |
-
rgb_uint8 = composite_rgba_uint8[:, :, :3]
|
| 458 |
-
mask_uint8 = composite_rgba_uint8[:, :, 3]
|
| 459 |
-
|
| 460 |
-
h, w = rgb_uint8.shape[:2]
|
| 461 |
-
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
|
| 462 |
-
|
| 463 |
-
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
|
| 464 |
-
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
|
| 465 |
-
|
| 466 |
-
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
|
| 467 |
-
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
|
| 468 |
-
|
| 469 |
-
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
|
| 470 |
-
|
| 471 |
-
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
| 472 |
-
|
| 473 |
-
stream = AsyncStream()
|
| 474 |
-
|
| 475 |
-
async_run(
|
| 476 |
-
worker, input_image, prompt, n_prompt, seed,
|
| 477 |
-
total_second_length, latent_window_size, steps,
|
| 478 |
-
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
| 479 |
-
)
|
| 480 |
-
|
| 481 |
-
output_filename = None
|
| 482 |
-
|
| 483 |
-
while True:
|
| 484 |
-
flag, data = stream.output_queue.next()
|
| 485 |
-
|
| 486 |
-
if flag == 'file':
|
| 487 |
-
output_filename = data
|
| 488 |
-
yield (
|
| 489 |
-
output_filename,
|
| 490 |
-
gr.update(),
|
| 491 |
-
gr.update(),
|
| 492 |
-
gr.update(),
|
| 493 |
-
gr.update(interactive=False),
|
| 494 |
-
gr.update(interactive=True)
|
| 495 |
-
)
|
| 496 |
-
|
| 497 |
-
elif flag == 'progress':
|
| 498 |
-
preview, desc, html = data
|
| 499 |
-
yield (
|
| 500 |
-
gr.update(),
|
| 501 |
-
gr.update(visible=True, value=preview),
|
| 502 |
-
desc,
|
| 503 |
-
html,
|
| 504 |
-
gr.update(interactive=False),
|
| 505 |
-
gr.update(interactive=True)
|
| 506 |
-
)
|
| 507 |
-
|
| 508 |
-
elif flag == 'end':
|
| 509 |
-
yield (
|
| 510 |
-
output_filename,
|
| 511 |
-
gr.update(visible=False),
|
| 512 |
-
gr.update(),
|
| 513 |
-
'',
|
| 514 |
-
gr.update(interactive=True),
|
| 515 |
-
gr.update(interactive=False)
|
| 516 |
-
)
|
| 517 |
-
break
|
| 518 |
-
|
| 519 |
-
def end_process():
|
| 520 |
-
stream.input_queue.push('end')
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
quick_prompts = [
|
| 524 |
-
'The girl dances gracefully, with clear movements, full of charm.',
|
| 525 |
-
'A character doing some simple body movements.'
|
| 526 |
-
]
|
| 527 |
-
quick_prompts = [[x] for x in quick_prompts]
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
def make_custom_css():
|
| 531 |
-
base_progress_css = make_progress_bar_css()
|
| 532 |
-
extra_css = """
|
| 533 |
-
body {
|
| 534 |
-
background: #fafbfe !important;
|
| 535 |
-
font-family: "Noto Sans", sans-serif;
|
| 536 |
-
}
|
| 537 |
-
#title-container {
|
| 538 |
-
text-align: center;
|
| 539 |
-
padding: 20px 0;
|
| 540 |
-
background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%);
|
| 541 |
-
border-radius: 0 0 10px 10px;
|
| 542 |
-
margin-bottom: 20px;
|
| 543 |
-
}
|
| 544 |
-
#title-container h1 {
|
| 545 |
-
color: white;
|
| 546 |
-
font-size: 2rem;
|
| 547 |
-
margin: 0;
|
| 548 |
-
font-weight: 800;
|
| 549 |
-
text-shadow: 1px 2px 2px rgba(0,0,0,0.1);
|
| 550 |
-
}
|
| 551 |
-
.gr-panel {
|
| 552 |
-
background: #ffffffcc;
|
| 553 |
-
backdrop-filter: blur(4px);
|
| 554 |
-
border: 1px solid #dcdcf7;
|
| 555 |
-
border-radius: 12px;
|
| 556 |
-
padding: 16px;
|
| 557 |
-
margin-bottom: 8px;
|
| 558 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 559 |
-
}
|
| 560 |
-
.gr-box > label {
|
| 561 |
-
font-size: 0.9rem;
|
| 562 |
-
font-weight: 600;
|
| 563 |
-
color: #333;
|
| 564 |
-
}
|
| 565 |
-
.button-container button {
|
| 566 |
-
min-height: 48px;
|
| 567 |
-
font-size: 1rem;
|
| 568 |
-
font-weight: 600;
|
| 569 |
-
border-radius: 8px;
|
| 570 |
-
border: none !important;
|
| 571 |
-
}
|
| 572 |
-
.button-container button#start-button {
|
| 573 |
-
background-color: #4b9ffa !important;
|
| 574 |
-
color: #fff;
|
| 575 |
-
}
|
| 576 |
-
.button-container button#stop-button {
|
| 577 |
-
background-color: #ef5d84 !important;
|
| 578 |
-
color: #fff;
|
| 579 |
-
}
|
| 580 |
-
.button-container button:hover {
|
| 581 |
-
filter: brightness(0.97);
|
| 582 |
-
}
|
| 583 |
-
.no-generating-animation {
|
| 584 |
-
margin-top: 10px;
|
| 585 |
-
margin-bottom: 10px;
|
| 586 |
-
}
|
| 587 |
-
"""
|
| 588 |
-
return base_progress_css + extra_css
|
| 589 |
-
|
| 590 |
-
css = make_custom_css()
|
| 591 |
-
|
| 592 |
-
block = gr.Blocks(css=css).queue()
|
| 593 |
-
with block:
|
| 594 |
-
# Title (use gr.Group instead of gr.Box for older Gradio versions)
|
| 595 |
-
with gr.Group(elem_id="title-container"):
|
| 596 |
-
gr.Markdown("<h1>FramePack I2V</h1>")
|
| 597 |
-
|
| 598 |
-
gr.Markdown("""
|
| 599 |
-
### Video diffusion, but feels like image diffusion
|
| 600 |
-
FramePack I2V - a model that predicts future frames from past frames,
|
| 601 |
-
letting you generate short animations from a single image plus text prompt.
|
| 602 |
-
""")
|
| 603 |
-
|
| 604 |
-
with gr.Row():
|
| 605 |
-
with gr.Column():
|
| 606 |
-
input_image = gr.ImageEditor(
|
| 607 |
-
type="numpy",
|
| 608 |
-
label="Image Editor (use Brush for mask)",
|
| 609 |
-
height=320,
|
| 610 |
-
brush=gr.Brush(colors=["#ffffff"])
|
| 611 |
-
)
|
| 612 |
-
prompt = gr.Textbox(label="Prompt", value='')
|
| 613 |
-
t2v = gr.Checkbox(label="Only Text to Video (ignore image)?", value=False)
|
| 614 |
-
|
| 615 |
-
example_quick_prompts = gr.Dataset(
|
| 616 |
-
samples=quick_prompts,
|
| 617 |
-
label="Quick Prompts",
|
| 618 |
-
samples_per_page=1000,
|
| 619 |
-
components=[prompt]
|
| 620 |
-
)
|
| 621 |
-
example_quick_prompts.click(
|
| 622 |
-
fn=lambda x: x[0],
|
| 623 |
-
inputs=[example_quick_prompts],
|
| 624 |
-
outputs=prompt,
|
| 625 |
-
show_progress=False,
|
| 626 |
-
queue=False
|
| 627 |
-
)
|
| 628 |
-
|
| 629 |
-
with gr.Row(elem_classes="button-container"):
|
| 630 |
-
start_button = gr.Button(value="Start Generation", elem_id="start-button")
|
| 631 |
-
end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False)
|
| 632 |
-
|
| 633 |
-
total_second_length = gr.Slider(
|
| 634 |
-
label="Total Video Length (Seconds)",
|
| 635 |
-
minimum=1,
|
| 636 |
-
maximum=60,
|
| 637 |
-
value=2,
|
| 638 |
-
step=0.1
|
| 639 |
-
)
|
| 640 |
-
|
| 641 |
-
with gr.Group():
|
| 642 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 643 |
-
use_teacache = gr.Checkbox(
|
| 644 |
-
label='Use TeaCache',
|
| 645 |
-
value=True,
|
| 646 |
-
info='Faster speed, but may worsen hands/fingers.'
|
| 647 |
-
)
|
| 648 |
-
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
|
| 649 |
-
seed = gr.Number(label="Seed", value=31337, precision=0)
|
| 650 |
-
latent_window_size = gr.Slider(
|
| 651 |
-
label="Latent Window Size",
|
| 652 |
-
minimum=1, maximum=33,
|
| 653 |
-
value=9, step=1,
|
| 654 |
-
visible=False
|
| 655 |
-
)
|
| 656 |
-
steps = gr.Slider(
|
| 657 |
-
label="Steps",
|
| 658 |
-
minimum=1, maximum=100,
|
| 659 |
-
value=25, step=1,
|
| 660 |
-
info='Not recommended to change drastically.'
|
| 661 |
-
)
|
| 662 |
-
cfg = gr.Slider(
|
| 663 |
-
label="CFG Scale",
|
| 664 |
-
minimum=1.0, maximum=32.0,
|
| 665 |
-
value=1.0, step=0.01,
|
| 666 |
-
visible=False
|
| 667 |
-
)
|
| 668 |
-
gs = gr.Slider(
|
| 669 |
-
label="Distilled CFG Scale",
|
| 670 |
-
minimum=1.0, maximum=32.0,
|
| 671 |
-
value=10.0, step=0.01,
|
| 672 |
-
info='Not recommended to change drastically.'
|
| 673 |
-
)
|
| 674 |
-
rs = gr.Slider(
|
| 675 |
-
label="CFG Re-Scale",
|
| 676 |
-
minimum=0.0, maximum=1.0,
|
| 677 |
-
value=0.0, step=0.01,
|
| 678 |
-
visible=False
|
| 679 |
-
)
|
| 680 |
-
gpu_memory_preservation = gr.Slider(
|
| 681 |
-
label="GPU Memory Preservation (GB)",
|
| 682 |
-
minimum=6, maximum=128,
|
| 683 |
-
value=6, step=0.1,
|
| 684 |
-
info="Increase if OOM occurs, but slower."
|
| 685 |
-
)
|
| 686 |
-
mp4_crf = gr.Slider(
|
| 687 |
-
label="MP4 Compression (CRF)",
|
| 688 |
-
minimum=0, maximum=100,
|
| 689 |
-
value=16, step=1,
|
| 690 |
-
info="Lower = better quality. 16 recommended."
|
| 691 |
-
)
|
| 692 |
-
|
| 693 |
-
with gr.Column():
|
| 694 |
-
preview_image = gr.Image(
|
| 695 |
-
label="Preview Latents",
|
| 696 |
-
height=200,
|
| 697 |
-
visible=False
|
| 698 |
-
)
|
| 699 |
-
result_video = gr.Video(
|
| 700 |
-
label="Finished Frames",
|
| 701 |
-
autoplay=True,
|
| 702 |
-
show_share_button=False,
|
| 703 |
-
height=512,
|
| 704 |
-
loop=True
|
| 705 |
-
)
|
| 706 |
-
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
| 707 |
-
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
ips = [
|
| 711 |
-
input_image, prompt, t2v, n_prompt, seed,
|
| 712 |
-
total_second_length, latent_window_size,
|
| 713 |
-
steps, cfg, gs, rs, gpu_memory_preservation,
|
| 714 |
-
use_teacache, mp4_crf
|
| 715 |
-
]
|
| 716 |
-
start_button.click(
|
| 717 |
-
fn=process,
|
| 718 |
-
inputs=ips,
|
| 719 |
-
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
|
| 720 |
-
)
|
| 721 |
-
end_button.click(fn=end_process)
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
block.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|